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Let R be a polygonal domain in R”, rh an associated triangulation and uh the finite element sohttion 

of a well-posed second-order elliptic problem on (0, 3-h). Let M = {Mi}fZ’=+f be the set of nodes which 
defines the vertices of the triangulation T,,: for each i, Mi = {xi 11 s 2 s n} in R”. The object of this 
paper is to provide a computational tool to approximate the best set of positions &f of the nodes and 

hence the best triangulation 4 which minimizes the solution error in the natural norm associated with 
the problem. 

The main result of this paper are theorems which provide explicit expressions for the partial 
derivatives of the associated energy functional with respect to the coordinates xf, 1s I < n, of each of 
the variable nodes Mi, i = 1, . . . , p. 

1. Introduction 

The object of this paper is the optimal triangular meshing for a large class of linear 
second-order elliptic problems. Its mathematical formulation is equivalent to the minimization 
of the solution error with respect to the positions of the nodes. The boundary nodes at the 
vertices of the polygonal domain are assumed to be fixed in position and number; the other 
nodes are free but their total number is fixed. A complete mathematical analysis is presented 
which does not involve ad hoc considerations (numerical or physical). 

Explicit expressions for the directional gradient of the solution error with respect to the 
position of the variable nodes are given. They turn out to be independent of the exact solution 
of the linear elliptic boundary value problem. Moreover gradient computations are easily 
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implementable within a finite element code. In fact gradient computations can be done in 
parallel with the computation of the solution. 

The finite element triangular-meshing optimization has been recently addressed by a 
number of authors (cf. Liniecki and Yun [4], W.C. Tucker [lo], Shephard and Gallagher[X], 
McNeice and Marcal [5], Melosh and Marcal [6], Shephard, Gallagher and Abel [9], Seguchi. 
Tomita and Hashimoto [lo], Bardield [l]). The reader is referred to the first paper for a 
discussion of the literature. For instance, our analysis applies to the torsion problem 

considered by Liniecki and Yun [4]. However our choice of optimization criterion is different 
and, in our mind, mathematically and computationally simpler. 

The optimization of the triangulation is an important problem in itself. But it is of 
paramount importance in the shape-optimization problem when the nodes are chosen as 

design parameters. 
Since, in general, the number of nodes is large, it is customary to introduce a reduced 

number of control parameters which will effectively control the positions of the nodes. An 
optimal triangulation can also be obtained within this class of controlled triangulations by 

using our analysis combined with a straightforward application of the chain rule. 
The ideas and techniques used in this paper are based on an adaptation of the ‘velocity 

method’ to finite element approximations (cf. [ll, 12)). 

1.1. Notation 

II% is the field of all real numbers and R” the Euclidean n-dimensional space. Given a 
domain 0 in R”, fi denotes the closure of D and H”‘(o), m 2 1 an integer, the Sobolev space 

of square integrable functions from n to R with square integrable partial derivatives up to 
order m (in the distribution sense). Let r be the boundary of the domain R. H:(0) will be the 
subspace of functions of H’(0) which are zero on the boundary r. By interpolation theory it is 
possible to define Sobolev spaces with fractional power such as HI’*(r). In particular the trace 
of a function o in H’(0) on the boundary r belongs to HI’*(r). The topological dual of 
H”*(r) will be denoted Kl’*(r). For more details the reader is referred to [3]. We shall often 
use the notation j-0 T for the composition of a function f :iR” + R with a transformation 
T:R”+lR” 

vx E R” (fo T)(x) = f(T(x)). 

2. Problem formulation 

It is well known that large families of linear elliptic boundary-value problems can be 
transformed into variational problems of the following form (cf. [3]). Let V be a Hilbert space 
(e.g. a closed subspace of the Sobolev space H’(0)) and u be the solution of the variational 

problem 

where (, )” is the duality pairing between V’ and V, F is a fixed element of V’ and a is a 
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coercive continuous bilinear form on V 

3a>o, v v E v, a(v, v) 2 (YIIvlI$, (2) 

and ]I * 11 is the norm in V. Under the above hypothesis ~u(u, v) is a norm which is equivalent 
to ]I~]] on V. In general the bilinear form a need not be symmetrical. 

Let V, be a finite-dimensional subspace of V and let uh be the solution of the variational 
problem 

uh E vh, vvh E vh, a(uh, vh) = (F, oh)" * (lh) 

For instance V can be a closed subspace of the Sobolev space H’(Q) and fl a polygonal 
domain in I%“. If Th denotes a triangulation of a, Vh can be chosen in the following way 

v,,={v,,E v)2),,I,&pk(K), VKh,,}, (3) 

where Pk(K) is the space of polynomials of order less or equal to k 2 1 on the triangle K. 
The standard theory (cf. [2]) indicates that the solution error is bounded by the inter- 

polation error 

where d(u, Vh) is the minimum distance of the solution u to the subspace V, of V measured 
in the V-norm and C > 0 is a constant which does not depend on u and Vh. 

From now on we specialize to the case where V is a closed subspace of H’(a), Vh is given 
by (3), that is, linear elliptic second-order problems. When the solution u to equation (1) 
is sufficiently smooth it can be shown (cf. [3]) that 

d(u, &) s C(U)hk , (5) 

where h is the ‘size’ of the triangulation and c(u) is a constant which depends on u but not on 
the choice of the triangulation Th. The final upper bound 

IIU - UhIl" G cWk 0% 

provided in the finite element method is established for all left-hand sides F in V’. Indeed c(u) 
has an upper bound cl(F, 0) which solely depends of F and 0 (but not on the triangulation 
G). 

3. Formulation of the optimal triangulation problem 

Let 0 be a polygonal domain and Th its triangulation. Denote by 
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(p and q integers) the set of all nodes in the trianguIation of the domain fin, by 

the set of all vertices of f2 on the boundary L&2 and by 

the set of all nodes which are not vertices on X2. 
Our objective is to construct a triangulation 71, of Jz by moving the p variable nodes 

M = (Mi}~zI in such a way that the resulting error //u - u;li/ be smaller than the initial error 
/Iti - &,[I for the triangulation Th. We assume that the number and the position of the nodes at 
the vertices are fixed. 

The solutions u and uh to problems (1) and (lh) coincide with the minimizing elements of 
the problems 

where 
(7h) 

(8) 

The directional derivatives of J are given by 

In particular for all p and 9 in V 

J(P) = JW + dJ(ltr; 4~ - $4 + hW; P - A P - $1. fll) 

In view of equation (1) for u 

J(u)=J(u)+~a(u-u,u-u), VUE v. (12) 

If & is the solution of (lh), 

II&I - u/j?‘= a(Uh - u, Uh - u) = 2[J(uh) - J(u)l, (13) 

where we use t’a(~, v) as the norm on V. If Q-~ and 5-A are two triangulations of J-2 with 
respective solutions uh E V, and ui, E V,, then 
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So to decrease the error 11~~ - u/I V associated with rh, it suffices to find a new triangulation & 
and hence new set of positions M’ of the variable nodes, such that 

In order to formalize the ‘optimal triangulation’ problem, it is helpful to explicitly denote 
the dependence of the solution uh to (lh) on the triangulation Th 

uh = uh(Th) (15) 

and the dependence of the triangulation Th on the set of variable nodes M by 

T,, = T,,(M). (16) 

In addition we introduce the notation 

ic”) = Jc”h bh (M))) (17) 

for the dependence of the optimal cost with respect to M. Recall that 

J(uh) = Inf{.%h) 1 vh E vh) , (18) 

dJ(uh;(ph)=o, V(PhE vh. (19) 

Formally, the ‘optimal triangulation’ problem would be to find the solution of the following 
minimization problem: 

Inf{j(M) 1 MC (W”)p, MC ai), (20) 

where d is the closure of 0. 
A difficulty with the formulation (20) is the fact that some choices of positions might yield 

unacceptable triangulations q,(M). To get around this difficulty, we restrict our attention to a 
family & of sets of variable nodes M which generate a triangulation with a common 
topological table T: for any two triangulations ‘corresponding nodes’ will have ‘corresponding 
neighbouring nodes’. To be more specific, fix the nodes at the vertices of the domain 0 and 
the number p of variable nodes. Define the family of sets of variable nodes which generate a 
triangulation with a given topological table T: 

A&={MC(W”)PIMCfi and Th(M)ETT}, (21) 

where TV is the family of all triangulations of fi with the same topological table T. In view of 
the above definition we can consider the new minimization problem: 

Inf{j(M) 1 ME AC,}. (22) 
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If a minimizing element ii?! exists, it will generate the ‘optimal triangulation’ +,, = rh(&f) with 
respect to the family .&. of sets of variable nodes M, which generate a triangulation rh(M) 
with the topological table T. 

4. Gradient computations 

The object of this section is the computation of the partial derivatives of j 

dj/tMf , lS/Sn, laiap, (23) 

with respect to the coordinates of the position 

Mi={xf)lSnSN} (24) 

of each variable node Mj. The starting point is the cost function 

where uh is the solution of the variational equation (lh). Although the partial derivatives of j 
can be computed by various techniques, we shall promote the use of partial Eulerian 
derivatives tix; as developed in the work of Zolesio [ll, 121. 

4.1. Partial Eulerian derivatives 

We briefly recall the velocity method for boundary-value problems over smooth domains 0. 
Given a smooth deformation field V defined in a neighbourhood of L!, each point X in 0 at 
time t = 0 is transported into a point x(t) at time t > 0 through the differential equation 

g (9 = w, x(t)), x(O)= v. 

This induces a smooth transformation T,(V)X = x(t) which maps 0 onto 0, = T,(V)(n). The 
Eulerian derivative of the cost function J at 0 for the field V is defined as (cf. [ll, 121) 

dJ@; V) = -$ J(Q)l,=o . (27) 

In the discrete case, the state &, = uh(rh) (solution of equation (I,,) depends on the variable 
nodes M through the triangulation rh = rh(M). Denote by {II 1 1 S 1 d n} the basis of I%“, 
where 1, is the n-tuple which has a 1 in the Ith position and zeros everywhere else. Given a 
small t > 0 and a node Mi, we perturb the set of positions M in the Ith direction 

M:,={Mj+ tSij1, ] lSjSp>, (28) 
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where Sii is the Kronecker index function. In each case, we construct vector fields which will 
transport triangles of Q onto triangles of the new TL and shape functions 

b={bjl lsjSp+q}C Vh 

for T,, onto shape functions 

b’={bf]lSjSp+q} c v:, 

for 7;: 

bj (kfi )(resp. bj (M: )) = Sij , i, i s p + 9 . 

Zoltsio [12] has shown that an appropriate choice is 

V,l(C X) = ei (X)1,, lSZSn, lSi=Sp, 

where the set e = {ei 1 1 G i Gp} are the piecewise 
l<iSp 

(29) 

(30) 

(31) 

(32) 

linear (P’) shape functions: for all i, 

eiE{VEH1(~~)IVI~E~l(K), VKETh}, 

ei(Mj) = Sij 9 lsjsp+q. 
(33) 

The remarkable feature of the deformation field Vi, is the fact that it maps each triangle of T,, 
onto a triangle of 7; and each basis element bj onto the corresponding basis element bf. 
Moreover, if u is a solution of the boundary-value problem in Vi, then the transported 
solution 

U :I = U, ’ Tt( Vii) (34) 

belongs to V,. Thus the partial material derivative of u with respect to the lth component of 
the position of node Mi is an element of V, defined as 

dutl 

Uir = dt ,=0 

and the partial Eulerian derivative of j as 

(35) 

(36) 

(37) 

where 
j (M) = .J(uh (oh (M))) . 
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4.2. Application to the Dirichlet problem 

Choose V = H:(a) 

where a0 E L”(a), aq E L-(.0) and for all x in f2 

41(x> 3 0, a&) = a,;(X) , 1 SG i, i < y1 , 

(L”(L?) is the space of essentially bounded functions on 0). F is of the form 

for a function f in L*(0). The solution of problem (1) with this choice of V, a and F coincides 
with the solution of the Dirichlet boundary-value problem: 

Au=f infZ, Au = - i.$, 5 (aij g] + WJ q 
I I 

(41) 
u = 0 on I’ (the boundary of 0). 

The solutions of (I), (7) and (34) coincide. The solution of (lh) is the finite element 
approximation which coincides with the solution of the minimization problem (7h). Recall that 
from identity (25) 

(42) 

For small t > 0 

(43) 

where V stands for one of the deformation fields Vi,, a* = T,(O), and (u~)~ is the solution of 
the variational problem 

(44) 
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or in vectorial form 

f. (AVu,,, Vu,,) do* = 

239 

.fv,, dLP, tlv,, E V;, (45) 

where Vu,, and Vu,, denote the gradients in R” and A is the symmetrical matrix whose entries 
are {Q}. By introducing the transported solution 

identity (43) can be rewritten on L& 

(47) 

where J, is the determinant of the Jacobian DT, of the transformation T,(V). It is readily seen 
(cf. [2]) that 

dj(M; V) = -B I, [div(fV(O))uh + fti] do, (48) 

where V(0) is the function x + V(0, x) and ti is the solution of the variational equation 

LiE v,, VVE v,, 
(49) 

j 
R 

(AVti, Vu) do = In [-(&VU,,, Vu) + div(f V(O))v] do, 

where 
ST = div V(O)A - [DV(O)A + A(DV(O))t] (50) 

and (DV(O))‘d enotes the transpose of DV(0). For V= Vjl the ap element of the matrix ~4’ is 
given by 

where 8,ei denotes the partial derivative of ei(x) with respect to the component x,. For 
instance for n = 2 and A = I (identity in I%‘) 

(524 J,g’= 
[ 

- alei -&ei 

-l&i &fA 1 
for V= VI, 

_$g’= 

[ 

a2ei -alei 

-&ei - a2e, I 
for V= Vi,. Wb) 
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Since ti belongs to V,, and &, is the solution of the variational equation 

j (A vu,, vVh) dfl = j f?.?/, df2, if f& i? v, , 
R n 

the above equation is true for &, = ti. But the right-hand side of (53) with &, = 
right-hand side of (49) with u = &, since A is symmetrical. Hence 

j fii dfL= j [-(JO uh, Vuh) + div(f V(0))uh] da. 
n n 

The substitution of the last identity in expression (48) for the gradient yields 

dj(M; V) = f j [(MV uh, Vuh) - 2 divff V(O))uh] dfl . 
n 

(53) 

ti is equal to the 

(54) 

THEOREM 4.1 (Dirichlet problem). The partial derivative of j with respect to the position of 
node Mj = {xf 1 1 d 1 s n) are given by the following expression 

When n = 2 and A = I, expression (56) reduces to 

(57a) 

f$ (M) = j {t &ei [-(&&>” + (a luh)‘] - &+‘%W%W, - &dfei b4,) da. (57b) 
I R 

It is readily seen that expression (56) is easily implementable since the terms alei are non-zero 
only in a neighbourhood of the nodes A$. The gradient can be constructed locally. 

4.3. Application to the Neumann problem 

Choose V = H’(a), V;, the subspace of V 

vb = (v f H’@) 1 VJK f P”(K), v 

the bilinear form a as in (38) which verifies 

a(j*cu>O. 

condition (39) and, in addition, 

(59) 
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Choose 

(F,v)=]‘fvdi2+~ gvdT, (60) 
R‘ r 

where f is a function in L2(0), r is the boundary of L!, and g is a function of H-“*(r). If U is the 
solution of the variational equation 

a(u,v)=(F,v), VVE v, (61) 

then U coincides with the solution of the Neumann boundary-value problem 

AU = f in L? (Au as defined in (41)) 

(62) 
C3U 
-= 

anA 
g onr, t= 

A 

where n = (n,, . . . , n,) is the unit exterior normal to the surface r. 
We proceed as in Section 4.2. The directional derivative of the functional 

(63) 

is given by 

dj(M; V) = - 11 (div(fV(0)) U,, + fci] da - $ [diV(gV(O))Uh + gU] dT, (64) R 

since the boundary r of 0 is fixed. Free boundary nodes move along faces of 0. The 
variational equation for the materia1 derivative is 

tiE v,, VVE v,, 

1 (AVU, Vu) dD = j [(AWU,, Vv)+div(~V(O))v] dR + 1 div(gV(O))v dr. 
(65) 

n n r 

Since Uh is the sohition of the variational equation 

1 
R 

(AVu,,Vv)d0=l fvda+l gvdZ-‘, \dvE v,,, 
n r 

it is verified with v = U. Similarty (65) is verified with v = Uh. As a result 

(67) 
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The substitution of the last identity into expression (64) yields 

dj(M; V)= :I, [( a’ V Us, VU,) - 2 div(~V(O))~~~ da - _/ div(gV(O~)~~ dT. 
r 

(68) 

But this is precisely expression (55) with an additional boundary term. 

THEOREM 4.2 (Neumann problem). The partial derivatives of j with respect to the position of 
node Mj = (xf j 1 s 1 s n} are given by the hollowing expression 

$M)=ij d,ei 5 aosdL3uh&u,, dR - 4 
1 a a/3=1 I 

2 [dueiaay + +w,,,I&~d~~~ dfi 

R t&y=1 

- 

I 
Wei jut, df-h - 

I 
&(gei)Uh Us (69) 

n I 

4.4. Extension to other second-order elliptic problems 

Any problem which can be abstracted in form (1) can be handled by the techniques in the 
previous sections. Only slight modification are to be brought to the final expression in 
Theorems 4.1 or 4.2. Certain families of non-symmetric elhptic problems can also be handled 
by appropriate choice of space-dependent coefficients a0 and ai,. 

4.5. Extension to higher even-order elliptic problems 

The reader will certainly have noticed that most of our analysis extends to fourth- or higher 
even-order elliptic problems. For a fourth-order problem, Vcan be chosen as a closed subspace of 
the Sobolev space H’(a) and V, can again be given by expression (3). However this results in a 
different type of finite element 

For second-order problems 

v, c v c H’(0) 

approximation. 

and the elements of Vk are continuous on 6 (i.e. ~~-approximation). For fourth-order 
problems 

v, c VU12(0) 

and the elements of V,, are continuous in fi with continuous first-order partial derivatives on 
fi (i.e. C~-approximation). In the computation of the partial Eulerian derivatives we have 
constructed a velocity vector field V,,(t, x) which transports triangles onto triangles and shape 
functions onto shape functions. For C-approximations shape functions are distorted and are not 
transported onto shape functions. Thus higher even-order problems require a deeper analysis 
which will eventually yield additional terms in the gradient expressions. However this is beyond 
the scope of the present paper. 

5. Control parameters 

When the number of variable nodes is large, it is customary to introduce a reduced set of 
control parameters I= (lk ) 16 k s m) to control the position of the set of nodes. This 



M. Delfour et al., Optimal triangulation for second-order elliptic problems 243 

construction which depends on physical and computational considerations can be written 

M = M(l) , (70) 

and the cost function becomes a function L of 1 

As a result using the chain rule, 

(71) 

(72) 

(73) 

are the coordinates of node I&. 
An example of such a parametrization will be given in Section 6.2. 

6. Numerical tests 

We have chosen two very simple numerical tests in order to illustrate the applications of the 
previous theory: a one-dimensionaf and a two-dimensional example. 

6.1. One-dimensional example 

Consider the Dirichlet boundary value problem 

$=fW in 12 = [O, l] , 

(74) 
u(0) = u(1) = 0. 

Partition the interval [O, 1] into N intervals 

O=M,<M,< 1.. <MN<MN+I= 1, hi=Mi+l-Mi:, lsi<N. (75) 

The approximation &, of u is obtained by minimizing the functional 

(76) 

over the subspace 

V, = {vh 1 uh E C’(0, I), ?A linear on each [Mi, Mi+l], z~h(O) = uh(l> = 0). (77) 
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The set of nodes A? is given by: 

fi={M,~lSnSN+l}, JM = {MI, MN+,}, M={M,,(~s~GN}. (78) 

EXAMPLE 6.1. 0 = [0, I]. 

f = -2a, a > 0, a constant . (79) 

The solution to (74) is given by: 

u(x) = ax(x - 1). 

The starting point is an unbalanced discretization concentrated on the left 

Fig. 1. Example 6.1: Initial discretization. Fig. 2. Example 6.1: Second discretization. 

Fig. 3. Example 6.1: Third discretization. Fig. 4. Example 6.1: Fourth discretization. 
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Fig. 5. Example 6.1: Fifth discretization. Fig. 6. Example 6.1: Tenth discretization. 

Fig. 7. Example 6.1: Twentieth discretization. Fig. 8. Example 6.1: Fortieth discretization. 

Fig. 9. Example 6.1: Sixtieth discretization. Fig. 10. Example 6.1: Final discretization. 
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- 0.4 L_L--L_. ~--.-L--L_ ._ l_._._. -A. I-. _._...i_- 
0 20 40 60 80 100 

ITERATIONS 

Fig. 11. Example 6.1: Variation of the cost as a function of the number of iterations. 

After 100 iterations the algorithm converges towards a uniform discretization 

0.20 

0.15 

0. IO 

0.05 li___l * ” 0.00. 
0 20 40 60 80 too 

ITERATIONS 

Fig. 12. Example 6.1: Variation of the norm of the gradient as a function of the number of iterations. 
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0.6 

0 20 40 60 90 100 

ITERATIONS 

Fig. 13. Example 6.1: Variation in the position of the sixth node as a function of the number of iterations. 

Figs. 1 to 10 show the solution and the position of the discretization nodes as the number of 
iterations increases. Figs. 11 and 12 give the cost and norm of the gradient as a function of the 
number of iterations. Figs. 13 and 14 give the positions of nodes 6 and 2 as a function of the 
number of iterations. 

This example shows that the optimal discretization is regular. It would have been difficult to 
predict this result since the solution is a parabola symmetrical about the point x = $ for which a 
concentration of nodes would have been expected around x = 1. 

o.25----- 

0.00~ I I 3 I I I , I , 
0 20 40 60 80 too 

ITERATIONS 
Fig. 14. Example 6.1: Variation in the position of the second node as a function of the number of iterations. 
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t 

\ 
1 

L 
1 

Fig. 15. Example 6.2: Initial discretization. Fig. 16. Example 6.2: Second discretization. 

t 

1 0 

I 

L 
1 

Fig. 17. Example 6.2: Third discretization. Fig. 18. Example 6.2: Fifth di scretization. 

t 

Fig. 19. Example 6.2: Tenth discretization. Fig. 20. Example 6.2: Last discretization 



M. Devour et al., Optimal triangulation for second-order elliptic problems 249 

EXAMPLE 6.2. LI = 10, l[. 

f(x) = -12ax(x - 1)) a > 0. (83) 

The solution is given by 

U(X) = &x3 - 2X2 + 1). W) 

The starting point here is a uniform discretization 

iv-, = i&z - 1) ) OSnSll, N= 11. (85) 

The algorithm converges in 13 iterations to a discretization concentrated in the center at point 
x = 3. 

Figs. 15 to 20 show the solution and the position of the discretization nodes as the number 
of iterations increases. Figs. 21 and 22 give the cost and the norm of the gradient as a function 
of the number of iterations. Figs. 23 and 24 give the positions of nodes 6 and 2 as a function of 
the number of iterations. 

This example seems to support the conjecture that the non-uniformity of the discretization 
is a function of the variation in magnitude of the function f. Here f is a positive parabola 
centered at x = i and the optimal discretization is concentrated around x = 1. 

-I 
0 2 4 6 8 IO 12 

ITERATIONS 

Fig. 21. Example 6.2: Variation of the cost as a function of the number of iterations. 
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0 2 4 6 8 IO 12 

ITERATIONS 

Fig. 22. Example 6.2: Variation of the norm of the gradient as a function of the number of iterations. 

0.4 

0.2 

I 

0 2 4 6 8 IO 12 

ITERATIONS 

Fig. 23. Example 4.2: Variation in the position of the sixth node as a function of the number of iterations. 
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0.26 - 

t 
0.18l I I I 

0 2 4 6 8 IO 12 

ITERATIONS 

Fig. 24. Example 6.2: Variation in the position of the second node as a function of the number of iterations. 

EXAMPLE 6.3. 0 = IO, l[ and f is as in Example 6.2. The starting point is the non-uniform 
discretization 

M,=&i&-l), OSnSlO, M,=l, N=ll. 

After 120 iterations the algorithm converges towards discretization concentrated at x = 1 which 
was obtained in Example 6.2. Figs. 25 and 26 give the cost and the norm of the gradient as a 
function of the number of iterations. Figs. 27 and 28 give the positions of nodes 6 and 2 as the 
number of iterations increases. 

In all three examples a gradient technique has been used. At step p, the variables nodes are 
denoted by 

MP={M+‘)lSisN}. 

The new set 

is given by 

M 7” = M$’ - tgf , gP = gradient at step p, 
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-2.5t ’ I I I I I 

0 20 40 60 80 100 120 

ITERATIONS 

Fig. 25. Example 6.3: Variation of the cost as a function of the number of iterations. 

1.0 

0. 8 

0. 6 

0.4 

0. 2 

0.0 
0 20 40 60 80 100 120 

ITERATIONS 

Fig. 26. Example 6.3: Variation of the norm of the gradient as a function of the number of iterations. 
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0 20 40 60 80 100 120 

ITERATIONS 

Fig. 27. Example 6.3: Variation in the position of the sixth node as a function of the number of iterations. 

0.31 

0. ol I I I I I I I 1 I 1 I 

0 20 40 60 80 100 120 

ITERATIONS 

Fig. 28. Example 6.3: Variation in the position of the second node as a function of the number of iterations. 
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and a t > 0 must be determined in such a way that j(MP”) is minimized with respect to t. A 
bounded interval for t can be obtained by writing 

which is equivalent to 

with g, = gN = 0. As the result 

t E IO, t,,,[ , t,,, = min Miti - Mi 

IsiGN gfi.1 -gPl . @fi) 

6.2. Two-d~rnen~~ona~ exarn~~e 

We have chosen a very simple example to ihustrate the previous theoretical considerations. 
Given the domain (Fig. 29) 

n = {(Xl, x2) 1Ix1+ &I < I>= Pi2 . (87) 

Let u be the solution of the Dirichlet problem 

$+%+fSO in0 
1 2 

u = 0 on I”’ (boundary of fz) . 

This is equivalent to problem (1) with V = HA(R), 

a(u, a) = [&U&ZJ + &u&u] dfz, (89) 

(F, V}=j fud0, 
n 

(90) 

f(xI, x,) = (N + l)(N + 2)(1- jx,j - JxJ)” for N = 6. (91) 

Since the problem is symmetrical with respect to the x1- and x2-axes, it is convenient to only 

triangularize the first quadrant (cf. Fig. 30). 
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I X2 

t1 

.\/ 

Xl 

-1 '0 +i- 

-1 

Fig. 29. Domain Lk 

The sets of nodes are: 

Fig. 30. Initial triangulation rh for n = 4. 
Mij=(i/n,j/n),OGi,jSn,O~i+j~n. 

. . 

A2 = {Mj IO Si,j~n,OSi+j~n} (92) 

Two types of experiments were run on this example. In the first one all the nodes in the 
triangulation were left free except boundary nodes which were required to stay on the 
boundary. In the second experiment, the interior nodes were controlled by a parameter la 1. 

6.2.1. Free interior nodes 
Successive triangulations are shown in Figs. 31 to 41. The experiment was stopped at 

iteration 12 (Fig. 41) since three triangles collapsed. At the next iteration one or two nodes can 
go across the side of a triangle. This creates artificial or overlapping triangles which destroy 
the initial topology of the triangulation. 

There are many ways to avoid or control this phenomenon. The simplest one is to introduce 
control parameters which will always preserve the topology of the initial triangulation. This 
technique will be successfully used in Section 6.2.3. 

In this section it is fair to say that the algorithm behaved nicely up to iteration 12. 
As in the one-dimensional example of Section 6.1 a constraint was placed on the scalar 

parameter t 

0 < t < t,,, (94) 

to preserve the initial triangulation. 
Given a triangle T defined by the coordinates of its vertices 
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c. = -0.377963 

Fig. 31. Initial triangulation 
(I.C. = Initial Cost). 

=-0.385912 

Fig. 34. Fourth triangulation. 

\ I.C. = -0.387164 

Fig. 37. Eighth iteration. 

h1.C. = -0.422124 

[\I.C. =-0.382835 

Fig. 32. Second triangulation 

N.C. q -0.386415 

Fig. 35. Fifth triangulation. 

h1.C. =-0.387684 

Fig. 38. Ninth iteration. 

I\I.C. = -0.384482 

Fig. 33. Third triangulation. 

I\I.C. = -0.386889 

Fig. 36. Sixth iteration. 

n1.C. = - 0.412849 

Fig. 39. Tenth iteration. 

Fig. 40. Eleventh iteration. Fig. 41. Twelfth iteration. 
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and the corresponding gradients at each vertex 

g1 = kll, g12) 7 g2 = (g21, g22) , g3 = (g31, g32) 3 

we determine for a number t > 0 a new triangle with vertices 

M: = Ml - tgl , M: = M2- tg2, M; = M3- tg3. 

We want to find a t >O such that the oriented surface of triangle M;M;Mi be of the same 
sign as the oriented surface of triangle M1M2M3. 

Recall that the oriented surface of a triangle T defined by its vertices M1M2M3 can be 
defined as the exterior product 

#43 - M,) x (M2 - Ml) . (95) 

This is a vector. However we are only interested in the algebraic quantity 

A(M3- M,, M2- M,), (96) 

where A: R2X R2+R is defined as 

N(h v2), (w’, w”)) = &w2- 212~4 . (97) 

Given a triangle T defined by its vertices ~1~2.~3, compute its surface 

ACM3 - Ml, M2 - MI). 

The parameter t > 0 defining a new triangle T’ from its vertices M;M$M: must be chosen 
in such a way that the surface of T’ be of the same sign as the surface of T 

sign A(M$ - M:, M; - MI) = sign A(M, - M,, M2 - Ml). (98) 

This yields a quadratic inequality in the variable t 

ut2+bt+c~0, tao, (99) 
where 

a = A(g3 - gl, g2 - gJ sign NM3 - MI, M2 - MI) , 

b = -[NM3 - M, g2 - gl) + A& - gl, M2 - Ml)] sign NM3 - Ml, M2 - Ml), 

c=jA(M,-M,,M,-M+O. (100) 

As a result t = 0 is always an admissible (but useless) solution. For each triangle T a range 
[0, tT] is determined. The bound t,,, is chosen as follows: 

t max = min{t, ) T E S} (101) 
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and the parameter t must be chosen in the range 

t E to, L,xl . (102) 

The computation of tT for each triangle is not difficult since the coefhcient c is always 
non-negative: 

a<0 j b2-4acaO I$ tr = 
-b-d/b’-4ac 

262 ; 

a>0 (i) b2-4acSO =$ t,=Sx, 

(ii) b*-&c>() 3 ~b+‘~~z~4acSt~, 

=$ tT = + 22 (a ?= 0, c 3 0) . 

So the computations are extremely simple. There is a bound on tT only in the case ~7 < 0 

/ 

-b-db2-4ac 

tT = 2a 
, if a < 0 , 

+m , ifa30, 

(103) 

Obviously this technique has its numerical limitations as seen at iteration 12 (Fig. 41) where 
errors in the computation of the coefficients a, b, c, and/or the root can lead to a t which is too 
large. As some triangles shrink to zero surface this is likely to occur. When it does, it would be 
advisable to fix the triangulation around delinquent nodes and in the vicinity of collapsing 
triangles. 

6.2.2. A gradient technique with thresholds 
The fundamental di~culty in the method described in the previous section is that the 

ilf-behaviour of a single triangle can reduce the size of the global t,,, to zero and essentially 
stop the whole optimization process. 

Intuitively it would be desirable to set the gradient artificially to zero at nodes A4; belonging 
to ill-behaved triangles and let the other nodes move. To do this we use the construction of 
Section 6.2.1 with some modifications. 

Consider the variable node Mi and the set 9i of all triangles T having xi as a vertex. 

Fi = {T E F 1 Mi is a vertex of T} . (104) 

For each T of .Yj compute the corresponding tT. Associate with each variable node && the 
parameter 

ti=Min{t,j TEZfi}. (105) 
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First method. Associate with each node Mi, the modified gradient 

gi’ “D 1 I 9 if ti a 8, 

, if fi < 8 
(106) 

for some preset threshold 0 > 0. Once this computation has been done for each node Mi, the 
parameter t,,, is defined as 

tfax = min{maX[ti, 01: Mi E M} . (107) 

We go back to our global optimization by moving each node Mi to a new position Mf 

Mf = Mi - tgi (108) 

for some f, O<tSti,,. 

Second method. Associate with each node Mi, the modified gradient 

(109) 

for some preset threshold 8 > 0. Then we go back to our global optimization and move each 
node Mi to a new position M: 

Mf = Mi - t& (110) 

forsome t,O<tSl. 

Both methods can be initiated with a large threshold 8 which can be further decreased as 
needed or when nodes are not moving any more. 

6.2.3. Nodes controlled by a parameter 
We introduce a control parameter 1 2 1. The vertices of the (quarter of the) domain are 

&z = NO, I>, (LO>, (0, ON (111) 

and for an even integer n 3 2 

M=M,,UM,UM,UM3, (112) 
where 

MO = 
I 
M,,(I) 

Ml = Mij(Z) 

IMij(O = ((i)’ 7 (i)‘) ,O<i,jGn,O<i+j<n , 

I 

lib&j(l)= ((t)‘, l- (;)I) ,$<i<n, i+j= n}, 

(113) 

(114) 
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The object of this exercise is to determine (for N = 6 in expression (!Jl)), the best 1 in R and 
hence the best trianguiation within this family of triangulations. Intuitively as N increases a 
singularity is created around the center of the domain R which should result in a finer 
triangulation around the point (0,O). 

The derivative of the position of node M, in MO with respect to I is 

2 (1) = ((i)’ In (-j , (t)’ In (i)) _ 

For nodes in Ml and M3 

The numerical tests are shown in Figs. 42 to 45. 

I.C. - -0.377962 

= - 5.10'9 E-02 

Fig. 42. Initial triangulation (I.C. = Initial Cost). 

I.C. = - 0.385550 
= - 4.124 E-05 

Fig. 44. Third triangulation. 

(117) 

= -0.385549 

= 2.891 E-04 

Fig. 43. Second triangulation. 

I .C. = - 0.385551 
= - 2.796 E-07 

Fig. 4.5. Fourth triangulation. 
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