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Abstract

In this paper, known analytical solutions are used to compare various finite
element discretizations for the numerical solution of large deformation problems
involving hyperelastic materials. This approach is also known as the method of
manufactured solutions (MMS). The performance of these different discretiza-
tions is analyzed in terms of convergence in a suitable norm with respect to
mesh size, and also in terms of computational cost and memory consumption.
Some interesting features of mixed finite element discretizations are presented
and discussed. The test cases presented can also serve as non trivial benchmark
problems and as a basis for code verification.

Key words: Large deformations, Hyperelastic material, Manufactured
solutions, Mixed methods, Convergence order, Code verification.

1. Introduction

The numerical solution of large deformation solid mechanics problems involv-
ing non linear materials and complex geometries still represents a challenge to
this day. The underlying numerical methodology is complex and irrespectively
of the approach used, its implementation is delicate and error prone.

Code verification is a tedious process that cannot be done with a single test.
A classical way to make sure that a numerical method is correctly implemented
is to solve problems where an analytical solution is known. These problems are
however scarce and in many instances oversimplified so that solving them is not
sufficient to detect all possible errors. Another strategy is to solve benchmark
problems and to make comparisons with the existing literature. This is certainly
a valid approach, but these comparisons are often only qualitative and therefore
incomplete.

Choosing the most appropriate finite element discretization of the different
variables (displacement, pressure) is also a difficult task. This is particularly
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true for large deformation elasticity problems. A vast choice of possibilities
exists ranging from displacement only to various mixed (displacement and pres-
sure) formulations using hexahedra or tetrahedra in three dimensions, triangles
or quadrilaterals in two dimensions. Code verification also includes checking
the convergence with mesh size of the different variables of the problem using
appropriate norms and to compare the results with the existing theory when
available.

Code verification, convergence properties and discretization performances
can all be established in a very efficient manner by using the method of manu-
factured solutions (MMS). This concept is very old and can be viewed as just
common sense but this idea was set is a systematic code verification frame by
Roache [1]. Manufactured solutions are widely used in the CFD community
(see Pelletier et al. [2]) but less often in solid mechanics (see Bathe et al. [3])
for example). A manufactured solution is simply an analytical solution to a
slightly modified version of the PDE system under consideration. The modi-
fication consists generally in the addition of artificial source terms which are
easily implemented.

With the elaboration of a manufactured solution, we can pursue three differ-
ent goals: 1) verify code implementation; 2) check the order of convergence of
different discretizations and compare with existing theoretical results; 3) com-
pare the performance of these discretizations with respect to accuracy, comput-
ing time and memory consumption.

This paper aims at presenting a systematic way to verify code implementa-
tion and to compare discretisation performances for large deformation elasticity
problems. Problems having a manufactured solution are solved on a series of
progressively refined meshes and the error versus the element size h is plotted.
Convergence with mesh size is only one aspect of the performance of a dis-
cretisation. Computing times and memory requirements necessary to achieve
a given accuracy are other important aspects. To assess this, different plots
are presented: error level versus computing time, error level versus number of
degrees of freedom, error level versus memory consumption, etc.

The paper is organized as follows. Section 2 provides the equations and
variational formulations for both displacement and mixed (displacement and
pressure) formulations. Section 3 describes how the method of manufactured
solution can be applied for large deformation problems. Section 4 briefly recalls
the construction of finite element spaces and the conditions for optimal conver-
gence. Sections 5 and 6 gives the numerical results for the displacement and
mixed formulations respectively,

2. Statement of the problem

We will use a total Lagrangian formulation to describe the deformation of an
initial domain Ω0 under the influence of various internal and external forces. The
displacement field u links a material point X = (X1, X2, X3) in the reference
configuration to its position x(X, t) in the deformed configuration Ωt following
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the relation (see Bonet and Wood [4] and Bathe [5]):

(x1(X, t), x2(X, t), x3(X, t)) = (X1, X2, X3) + (u1(X, t), u2(X, t), u3(X, t))

The deformation gradient is denoted F with components Fij = ∂xi

∂Xj
and is

related to the displacement gradient (∇Xu)ij = ∂ui

∂Xj
by the relation F = (I +

∇Xu). The Cauchy-Green and Green-Lagrange tensors are defined as usual by
C = F> ·F and E = 1

2 (C − I).
On the reference geometry Ω0, the equilibrium equation can be written as:




−∇X ·Π = r0 in Ω0

u = u0 on Γ0
D

Π ·N = h0 on Γ0
N

In the above system, Π is the first Piola-Kirchoff tensor. The boundary Γ0 of
the domain Ω0 is splitted into two disjoint parts Γ0

D and Γ0
N where Dirichlet

and Neumann boundary conditions are imposed (N is the unit normal vector
to Γ0

N ).
The first Piola-Kirchoff tensor is related to the second Piola-Kirchoff tensor

S and to the Cauchy stress tensor σ by the relation:

Π = F ·S = JσF−> or σ =
1
J

F ·S ·F> (1)

where J = det F is the Jacobian of the transformation from Ω0 to Ωt.
We will consider here only hyperelastic materials although the methodology

is fairly general and can be extended to various materials. In this case, the
second Piola-Kirchoff tensor is directly obtained from a potential Ψ by the
relation (see [4]):

S =
∂Ψ
∂E

= 2
∂Ψ
∂C

Among the various models that exist, we will consider the Saint-Venant Kir-
choff and the Mooney-Rivlin models. The same numerical experiments could
be performed for other similar models.

2.1. The Saint-Venant Kirchoff model
The Saint-Venant Kirchoff model is a simple generalization of the elastic

model used in small deformation problems. The potential Ψ and the second
Piola-Kirchoff tensor can be written as:

Ψ =
1
2
λ(trE)2 + µ(E :E), S =

∂Ψ
∂E

= λ(trE)I + 2µE (2)

where λ and µ are the Lamé coefficients which are related to the Poisson coef-
ficient ν and to Young’s modulus E0 by the relations:

λ =
E0ν

(1 + ν)(1− 2ν)
µ =

E0

2(1 + ν)
(3)
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The variational formulation can be written as:
∫

Ω0
(λ(trE)I + 2µE) :

(
F> ·∇Xw

)
dV =

∫

Γ0
N

h0 ·w dA +
∫

Ω0
r0 ·w dV (4)

In the following, this variational formulation will be referred to as a displacement
only formulation. Eq. (4) is non linear and can be solved for the displacement
u using various methods. We will use Newton’s method since it converges
quadratically.

When the Poisson coefficient ν approaches 0.5, the material gets progres-
sively more incompressible and it is well known that displacement formulations
are no longer appropriate and that mixed methods are better suited.

2.2. Mooney-Rivlin material
For incompressible materials, a different formulation is needed and it is more

convenient to split the second Piola-Kirchoff tensor into a volumic part and an
isochoric part:

S = S′ − pJC−1 (5)

where p is the pressure which is defined by p = −κ(J − 1). When the bulk
modulus κ is large, the material is almost incompressible as it is the case for
rubber materials encountered in the tire industry. In this case, one of the most
widely used hyperelastic model is the Mooney-Rivlin model which gives (see [4]):

S′ = 2c1I
−1/3
3

(
I − 1

3
I1C

−1

)
+ 2c2I

−2/3
3

(
I1I −C − 2

3
I2C

−1

)
(6)

where I1 = tr C, I2 = 1
2 (I2

1 −C : C) and I3 = det C = J2 are the invariants of
the tensor C. The mixed formulation can now be written as:




∫

Ω0
S′ : (F> ·∇Xw) dV −

∫

Ω0
pJF−> :∇Xw dV =

∫

Γ0
N

h0 ·w dA +
∫

Ω0
r0 ·w dV

∫

Ω0
(J − 1)q dV +

∫

Ω0

1
κ

pq dV =
∫

Ω

s0 q dV

(7)
In the pressure equation, there is usually no source term (s0 = 0). With man-
ufactured solutions, it is however necessary to account for the possibility of a
non-zero source term. This system will also be solved using Newton’s method.

3. Elaboration of a manufactured solution

The method of manufactured solution consists in injecting an analytical ex-
pression into the PDE under consideration. This generates a right-hand side
term in the equation which can be seen as an artificial source term. It is im-
portant to carefully chose the manufactured solution so that it exercises all the
terms in the variational formulation.
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3.1. Step by step construction
The steps for the construction and use of a manufactured solution are es-

sentially the same for both the displacement and the mixed formulations. The
description is given for the displacement only formulation. The differences for
the mixed formulation are indicated between parenthesis.

1. Choose a manufactured solution for the displacement u (and for the pres-
sure p);

2. Choose material properties λ and µ (or c1, c2 and the bulk modulus κ);
3. Compute the deformation gradient F ;
4. Compute the Green-Lagrange tensor E = 1

2 (F t ·F − I) (or the Cauchy-
Green tensor C = F> ·F );

5. Compute the second Piola-Kirchoff tensor S using (2) (or using the decom-
position S = S′ − pJC−1 with S′ given by (6) ;

6. Compute the first Piola-Kirchoff tensor Π = F · S;
7. Compute the divergence of the first Piola-Kirchoff r0 = −∇X ·Π (and the

residual term for the pressure: s0 = −(det(F )− 1)− p/κ);
8. Choose a computational domain Ω0;
9. From the normal N to the reference geometry, compute h0 = Π · N if

Neumann boundary conditions are to be imposed;
10. Compute the Cauchy stress tensor σ (for comparison purposes only).

Many of the above steps can be performed very efficiently using a symbolic
toolkit such as MapleTM or Mathematica R©. The choice of an analytical dis-
placement field is a priori arbitrary. We have chosen sufficiently regular (smooth)
functions so that the expected order of convergence can be observed for all our
discretizations.

3.2. Choice of geometry and boundary conditions
When using manufactured solutions, almost any reference geometry Ω0 can

be considered. We have chosen a curved geometry, which is depicted in Fig. 1,
that can be seen as a crude approximation of a tire. Curved boundaries intro-
duce an error in the representation of the computational domain. Using curved
finite elements may be necessary to obtain a better approximation of the domain
and to maintain optimal convergence order.

In our problem, Dirichlet boundary conditions are imposed on the outer and
inner curved surfaces of the tire (see Fig. 1) while Neumann boundary condi-
tions are imposed on the flat sides. For Dirichlet conditions, the manufactured
solution can be used directly. Neumann conditions are also easily imposed since
N is the normal to the undeformed geometry and is therefore easily computed.
In the geometry shown of Fig. 1, the unit normal vector on the boundary faces
at Y = 0 and Y = 1/4 is N = [0,±1, 0]. From that, the value h0 = Π ·N is
easily computed (see step 9 in Section 3.1).
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Figure 1: Geometry and boundary conditions of the problem
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4. Finite element discretisation spaces

4.1. General considerations
Let us first recall some basic facts concerning the construction of a finite

element space. Our notation follows closely that of Arnold et al. [6]. The
starting point is a reference domain Ω0 and a partition (a mesh) of that domain
composed of elements K having tetrahedral or hexahedral shape. The next step
is the definition of a reference element K̂ and a class of invertible mappings TK

from the reference element to the "real" element K = TK(K̂) (TK(ξ1, ξ2, ξ3) =
(X1, X2, X3)) where (ξ1, ξ2, ξ3) is a coordinate in the reference element and
(X1, X2, X3) its corresponding coordinate in the real element.

Generally speaking, to define a finite element discretization space, it is only
necessary to choose a set of polynomials V̂ (K̂) on the reference element K̂. The
most natural choices are the space Pk(K̂) of polynomials of degree at most k
and the space Qk(K̂) of polynomials of degree at most k in each variable. The
space Pk(K̂) is mostly used on tetrahedral elements while Qk(K̂) is used on
hexahedra, but there are exceptions and numerous variations.

This choice of a polynomial basis V̂ (K̂) automatically defines a space of
functions VT (K) on the real element K by the composition of the functions in
V̂ (K̂) with the mapping T−1

K of the form:

VT (K) =
{

v(X1, X2, X3) = v̂ ◦ T−1
K (X1, X2, X3) for v̂ ∈ V̂ (K̂)

}
(8)

The simplest situation arises on tetrahedra (triangles in 2D) with affine
(linear) mappings TK . If the space Pk(K̂) is chosen, then VT (K) is naturally
the space Pk(K), the space of polynomials of degree k on the element K. When
working on hexahedra, the natural mapping is trilinear (Q1). This allows for
general hexahedral meshes with elements having straight edges (quadrilaterals
with straight sides in 2D). It may even be necessary to use higher order mappings
on domains with curved boundaries for example; P2(K̂) or Q2(K̂) mappings can
be used in these cases.

For general approximation theory, it is shown in [6] that in the case of bilinear
(or trilinear in 3D) mappings, optimal convergence in Lp-norm can be attained
if:

VT (K) ⊇ Pk(K) (9)

This is a stronger requirement than the condition V̂ (K̂) ⊇ Pk(K̂) since it takes
into account the mapping TK . For affine mappings on tetrahedra, it can be
easily shown that V̂ (K̂) ⊇ Pk(K̂) ⇐⇒ VT (K) ⊇ Pk(K) and it is therefore
sufficient to require that V̂ (K̂) contains Pk(K̂). This equivalence does not hold
in general. In particular, on hexahedra with trilinear mappings, condition (9)
will hold only if V̂ (K̂) ⊇ Qk(K̂) i.e. the complete set of polynomials of degree
k in each variable.

The above result has immediate consequences for second order elliptic prob-
lems. If condition (9) is satisfied, setting:

Vh =
{
vh ∈ (H1(Ω))3 | vh|K ∈ VT (K), ∀K}

(10)
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then the finite element discretization error satisfies:

‖u− uh‖1,Ω ≤ C inf
vh∈Vh

‖u− vh‖1,Ω ≤ hk‖u‖k+1,Ω (11)

where h = maxK hK and hK is the diameter of the containment sphere of
element K. The presence of the Hk+1-norm on the right-hand side imposes
some regularity on the solution u for this result to hold.

5. Displacement only formulation

Large deformation problems are nonlinear and consequently their numerical
analysis is very difficult. We can however rely, at least partially, on the linear
case of small deformation problems to conjecture about the behavior of the
different discretizations. For (small deformation) displacement formulations,
the problem is elliptic and we can apply the results of Section 4. Optimal
convergence of order k in H1-norm should be observed if VT (K) ⊇ Pk(K).

In our in-house code (see [7]), we can test many different discretizations
on hexahedra and tetrahedra. Table 1 (left part) summarises the tetrahedral
and hexahedral elements we used in our comparisons. This part of the table
defines the different spaces V̂ (K̂) used in the displacement only formulation.
The corresponding finite element spaces are then defined using (10).

For tetrahedral elements, the linear (P1) and the quadratic (P2) element
were used. The P+

2 element is a quadratic element enriched with cubic bubble
functions at the barycentre of the faces and a quartic bubble function at the
barycentre of the element. Finally the third order Hermite (PH

3 ) has degrees
of freedom for the displacement and its first order partial derivatives at each
vertex and for the displacement at the barycentre of the element. For hexahedral
elements, the classical 8-noded trilinear Q1, the complete 27-noded triquadratic
Q2 together with the incomplete (20-noded brick) Q20

2 elements were used.

5.1. Meshes, mappings and numerical integration
For our numerical simulations, we have used hexahedral and tetrahedral

meshes. Four hexahedral meshes were first constructed by successive refinements
of an initial mesh containing 64 elements. This led to meshes with 64, 512, 4096,
32 768 and 262 144 elements (the first and fourth meshes are illustrated in Fig. 2).
Note that in the mesh refining process, mid-edge nodes are projected on the
curved boundaries of the geometry to maintain a good agreement between the
geometry and the surface mesh. Each hexahedral element was then subdivided
into 6 tetrahedra producing meshes with 384, 3072, 24 576, 196 608 and 1 572 864
elements.

Isoparametric mappings (TK ∈ V̂ (K̂)) from K̂ to K were used in all nu-
merical tests. This means that for first order discretizations, tetrahedra and
general hexahedra with straight sides were used. For higher order discretiza-
tions, P2, Q20

2 and even Q2 transformations were used producing elements with
straight sides inside the domain and elements with curved faces uniquely along
the boundary of the domain.
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Displacement only Mixed formulation
Tetrahedral Hexahedral Tetrahedral Hexahedral

. . . .

P1 Q1 P1 − P0 † Q1 − P0 †

. . . .

P2 Q20
2 P+

1 − P1 Q20
2 −Q1 †

Incomplete brick MINI Incomplete brick

. . . .

P+
2 Q2 P2 − P1 Q2 −Q1

Taylor-Hood Taylor-Hood

. . .

PH
3 P+

2 − PK
1 Q2 − PK

1

Hermite Crouzeix-Raviart Crouzeix-Raviart

Table 1: Finite element discretizations. DOFs are indicated by the symbol •. Symbol } indi-
cates a node the variable and its partial derivatives are unknown. Finally, symbol † indicates
elements not satisfying the inf-sup condition.
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32 768 elements 196 608 elements

Figure 2: Coarser and finer hexahedral (left) and tetrahedral (right) meshes

Finally, one of the most obvious source of error in finite element compu-
tations is the quadrature scheme. In our numerical tests, we chose the lowest
possible quadrature formulae independently for each integral term of the vari-
ational formulations (4) and (7) in order to minimize the computational cost.
Manufactured solutions often lead to complex expressions for r0, s0 and h0 (pro-
duced by MapleTM). To compute these specific terms (and only these ones),
a 5 × 5 × 5 (125 points) Gauss-Legendre integration scheme on hexahedra and
a 53 points scheme on tetrahedra (see [8]) were used. For Neumann boundary
conditions, we used a 5 × 5 Gauss-Legendre scheme for the quadrangles and a
37 points scheme for the triangles (see [9]). Classical integration formulae were
used for all the other terms in the variational formulation.

5.2. Convergence with mesh size
To achieve our second and third goals, which are to verify the convergence

order of the discretizations and to assess their respective performance, we will
use a manufactured function of a degree higher than any of the proposed dis-
cretizations. For instance, let:

u =
[
X1

4 +
2X2X3

5
, X2

4 +
2X1X3

5
,
X3

4

10
− 2X1X2X3

5

]

with material properties ν = 0.3 and E0 = 1. Following the steps for the
construction of a manufactured solution, the source terms r0, s0 and h0 are
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computed and put into a compatible input file for our in-house code. Our
MapleTMworksheet is available for download (see [10]).

We first compare the results for the H1-norm of the error on the displace-
ment. The asymptotic slope on a log-log scale of the relative error norm versus
the mesh size (h) is computed for each given discretization. Fig. 3 gives an
overview that facilitates the identification of the trends in the behavior of the
error norm for the chosen discretizations.

We can observe that the calculated slopes are very close to those expected
from theory. We can easily distinguish between first, second and third order
elements. Discretizations of the same order yield similar slopes and comparable
error levels. Second order hexahedral elements are just slightly more accurate
than their tetrahedral counterparts. This is no surprise since their polynomial
basis is richer (Q2 ⊃ P2) and it is expected that they give more accurate ap-
proximations for a given manufactured solution. The norm of the error on the
finest mesh is 0.009% for the Q2 element and 0.013% for the P2 element. The
difference is thus very small.

The amplitude of the error level is however surprisingly high for first order
elements and in particular for the very popular Q1 element. The error obtained
on the finest mesh (with 836 352 DOFs) is about the same as the one obtained
with the coarsest mesh using the incomplete quadratic discretization (with 1440
DOFs) at around 0.8%. High order elements are thus more accurate even on
much coarser meshes and it is therefore clearly unfair to compare the different
discretizations on the same mesh. Note however that these conclusions can be
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drawn since we have chosen a regular manufactured solution. Higher order dis-
cretisations require higher regularity for optimal convergence. The conclusions
may be different for an insufficiently regular manufactured solution.

A few words are necessary to weigh the very good performance of the Q20
2

element. This element is a very simple example where V̂ (K̂) ⊇ P2(K̂) while
VT (K) + P2(K). From the discussion of Section 4 and as was observed in Lee
and Bathe [11] and later in [6], it is possible to obtain second order convergence
only on meshes composed of affine elements. On general meshes, the Q20

2 element
is unable to reproduce a quadratic manufactured solution and convergence can
degenerate to first order, but the accuracy is still better than the one obtained
for the Q1 element. Second order convergence on general meshes can be achieved
for the complete Q2 element only.

Quadratic convergence is indeed observed for the Q20
2 element even though

the meshes are made of general hexahedra. With the geometry at hand however,
the elements are very close to parallelepipeds. When refining a general mesh
in the usual manner, by simply dividing the edges, the elements get closer and
closer to parallelepipeds and optimal convergence may reappear. This is the
case with the meshes of Fig. 2.

To observe suboptimal convergence, each node of the initial meshes were
randomly perturbed in such a way that the elements on all meshes remain with
non parallel faces. Suboptimal convergence (m = 1.73) for the Q20

2 element can
be observed in Fig. 4. Further decreasing h would probably lead to a unit slope
as was observed in [6, 11] for two-dimensional problems.

5.3. Performance comparison
Another dimension is added to the evaluation of the performance of the

discretizations by also comparing the computational times and the memory
requirements for each discretization on different meshes. We thus compute the
L2-norm of the error on the Cauchy stress tensor (‖σ − σh‖0,Ω). Computing
the L2-norm of the error on this important variable serves as a basis for the
comparisons.

This relative error norm on σ is thus plotted in Fig. 5 as a function of the
number of DOFs, the total CPU time an the memory necessary to make the
computation. The measure includes all the CPU time from the reading to the
writing of results and it is largely dominated by the matrix factorization. Using
these figures, we can more easily decide which discretization is best for a given
computational time. For this regular manufactured solution, the conclusions
that can be drawn are the following: For a given computational cost or a given
number of DOFs or a given memory consumption, higher order elements are
more accurate. Whether from the perspective of minimizing the error norm for
a given computational cost or minimizing the computational cost for a given
error norm, higher order elements are more cost effective. The elements rank
approximately as: PH

3 , Q20
2 , Q2, P2, P+

2 , Q1 and then the P1 in terms of
computational efficiency. We can also make a couple of important remarks:
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• Q1 and P1 solutions are not at all cost effective when the accuracy of the
solution is taken into account. For a given computational cost in terms of
CPU time and memory, it is still preferable to use higher order elements
on a much coarser mesh because the error level is lower.

• The Hermite element is probably not a judicious choice since the imposi-
tion of Dirichlet boundary conditions is more difficult due to the presence
of DOFs associated to the first order partial derivatives of the displace-
ment. However, similar results in terms of precision and efficiency could
probably be obtained with a Lagrange cubic element (P3).

• A good compromise is therefore a second order element such as the P2 or
the (complete) Q2 elements.

5.4. Curved boundaries and subparametric elements
We close this section with a final remark concerning the presence of curved

boundaries and the importance of using isoparametric mappings. For second
order elements, it is necessary to use isoparametric mappings TK to maintain
optimal convergence order. Strang and Berger [12] have shown that when using
the subparametric P2 element (with P1 mappings), O(h3/2) convergence rate is
observed in H1-seminorm instead of the optimal second order rate. We have
also observed this suboptimal convergence on one of our manufactured solution.

6. Mixed displacement-pressure formulation

Although the analysis is more complicated for mixed formulations, it is now
classical at least in the small deformation case. As we shall see, the conclusions
for mixed (displacement-pressure) formulation are similar to those drawn for the
displacement only formulation. There exists a large number of mixed elements
i.e. pairs of discretizations for the displacement and the pressure that can be
used to solve large deformation problems. Some of them satisfy the inf-sup
condition and others do not. We have restricted our study to those most often
found in the literature. It is outside the scope of this paper to demonstrate
which pair satisfies this condition and we refer to Brezzi and Fortin [13] and to
Boffi et al. [14] for a complete discussion.

6.1. Theoritical considerations
Two finite element spaces must be chosen. The displacement finite element

space can be written as before:

Vh =
{
vh ∈ (H1(Ω))3|∀K, vh|K ∈ VT (K), ∀K}

while for the pressure, we must distinct two possible cases. For continuous
pressure, we define:

Qh =
{
qh ∈ L2(Ω)|∀K, qh|K ∈ QT (K), ∀K}
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where QT (K) is usually defined as was VT (K). As discussed in [15] for the Stokes
problem, this is however not necessarily the best choice. For discontinuous
pressure discretization, there exists two choices. For example, for a so-called
linear discontinuous pressure, we can choose Q̂(K̂) = P1(K̂) and:

Qh = P K̂
1 =

{
qh ∈ L2(Ω)|∀K, qh|K = q̂ ◦ T−1

K (x, y, z) for q̂ ∈ P1(K̂)
}

and therefore the functions in P K̂
1 are linear on the reference element K̂ but not

necessarily linear on the real element K, depending on TK . This is probably
the most common frequently used definition. We can also use the following
definition:

Qh = PK
1 =

{
qh ∈ L2(Ω)

∣∣∣∣∣qh|K = aK +
3∑

i=1

gK
i (Xi −XK

i ) , ∀K
}

where (XK
1 , XK

2 , XK
3 ) is the barycenter of the element K. With this choice,

the degrees of freedom aK and (gK
1 , gK

2 , gK
3 ) are respectively the value of the

pressure and its gradient at (XK
1 , XK

2 , XK
3 ). The functions in PK

1 are now linear
on K. On tetrahedral meshes with linear mappings TK , the two definitions are
equivalent. On general hexahedral meshes, PK

1 contains P1(K) while P K̂
1 does

not. This leads to suboptimal convergence when P K̂
1 is used for discontinuous

pressure. We have observed results (not presented) similar to those in [15] for
large deformation problems in three dimensions.

A compatibility condition between the displacement and pressure discretiza-
tions must be respected known as the inf-sup condition, which is described in
details in [13, 14]. This condition can be written as:

inf
qh∈Qh

sup
vh∈Vh

∫
Ω

qh∇ · vh

||vh||1,Ω ||qh||0,Ω
≥ αh > α > 0 (12)

The constant αh always exists, but may depend on h or be equal to zero. In
order to satisfy the inf-sup condition, it must be bounded from below by a pos-
itive constant α which does not depend on h. Note that to different pairs of
discretizations satisfying the inf-sup condition (12), correspond different values
of α. When the inf-sup condition is satisfied, then the finite element discretiza-
tion error satisfies (see [13] pages 56-57):

‖u− uh‖1,Ω ≤ c1(α) inf
vh∈Vh

‖u− vh‖1,Ω + c2 inf
qh∈Qh

‖p− qh‖0,Ω

‖p− ph‖0,Ω ≤ c3(α) inf
qh∈Qh

‖p− qh‖0,Ω + c4(α)‖u− uh‖1,Ω

(13)

The constants ci(α), i = 1, 3, 4 are O(α−1) functions (but not c2). Hence, the
error estimate on the pressure is O(α−2). For a fixed space Qh, enriching Vh

will increase α and in the same time the accuracy of the solution. Conversely,
for a fixed space Vh, enriching Qh will decrease α and this may have dramatic
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consequences on the accuracy of the pressure and, ultimately, of the displace-
ment.

The order of convergence of the discretization will depend on both spaces Vh

and Qh for the displacement and the pressure. Succinctly, if VT (K) ⊇ Pk(K)
(displacement) and QT (K) ⊇ Pk−1(K) for the pressure, then:

‖u− uh‖1,Ω + ‖p− ph‖0,Ω ≤ Chk (‖u‖1,Ω + ‖p‖0,Ω) (14)

and this holds for general meshes.
Note however that the above (linear) analysis does not give the complete

picture. As described in Pantuso and Bathe [16, 17] in a displacement-pressure-
enhanced strain formulation and Auricchio et al. [18] for a displacement-pressure
formulation, elements satisfying the inf-sup condition may present numerical in-
stabilities in the large deformation case. It can be shown that these instabilities
are explained by a failure in the ellipticity condition. The importance of the
ellipticity condition is also discussed in Brezzi and Bathe [19]. One such ex-
ample is the MINI element (see section 6.4.1) which may be unstable in some
conditions even though it satisfies the inf-sup condition.

6.2. Choice of discretizations
The different mixed discretizations (the spaces V̂ (K̂) and Q̂(K̂)) tested in

the following numerical tests are presented in Table 1. The simplest choice is
the P1−P0 (linear for the displacement and piecewise constant for the pressure)
which does not verify the inf-sup condition. This is a poor choice probably at the
origin of the myth that tetrahedral elements are not suited for incompressible
solid mechanic problems.

The most popular choice is the Q1 −P0 element for which the displacement
is trilinear while the pressure is piecewise constant.It does not satisfy the inf-sup
condition either, but is nevertheless frequently used probably due to its simplic-
ity. Another advantage is that the pressure can be eliminated by penalization.
For these reasons, it is generally recognized as an effective and low cost element.

The simplest element satisfying the inf-sup condition is the MINI element
introduced by Arnold et al. [20] and also denoted P+

1 −P1. It is mainly used in
CFD applications. Since in this case Vh ⊇ P1 and Qh ⊇ P1, Eq. (14) makes it
a first order (O(h)) element.

Second order elements are represented by the Taylor-Hood [21] element P2−
P1 and by the Crouzeix-Raviart [22] elements: P+

2 − PK
1 on tetrahedra, and

Q2−PK
1 on hexahedra. We have also tested the incomplete quadratic Q20

2 −Q1

which, to the authors knowledge, does not satisfy the inf-sup condition.

6.3. Convergence with mesh size
For this test, we use the Mooney-Rivlin model with k = 10 000, c1 = 1 and

c2 = 2. The manufactured solution is:

u =
1

200
[
X3

1X4
2X4

3 , X3
1X3

2X4
3 , X3

1X3
2X3

3

]
and p =

X3
1

200
+

X4
2

100
+

X2
3

250
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The convergence slopes obtained by each discretization are shown in Fig. 6
for the displacement and the pressure. In all cases, the slopes of the curves are
what is expected from theory, except for the P+

1 − P1 element for which the
slope is slightly higher than 1. This slope should however tend towards 1 if the
meshes are further refined.

The P1−P0 element gives extremely inaccurate results and should never be
used under any circumstances. The Q1−P0 element performs better with a 2%
error on the displacement and 0.8% error on the pressure on the finest mesh
(262 144 elements!), but this is still very disappointing. The MINI (P+

1 − P1)
element has a similar accuracy and is therefore also disappointing. All second
order elements are clearly more accurate as expected. The error on the coarsest
mesh for both the displacement and pressure is comparable to the error on the
finest mesh for linear elements. The performances of the different hexahedral
elements are indistinguishable but, as in the displacement formulation, they are
more accurate than their tetrahedral counterparts.

6.4. Performance comparison
Here again, the accuracy on the Cauchy stress tensor is a good indicator

of the performance of a mixed element since its computation involves both the
displacement and the pressure (see Eqs. (1) and (5)). The results for all elements
are illustrated in Fig. 7.

6.4.1. The Q1 − P0 and the MINI elements
Although the Q1 − P0 does not satisfy the inf-sup condition and, on the

contrary, the MINI (P+
1 − P1) element does satisfy this condition, these two

elements present comparable performances.
For the Q1−P0 element, it is well known that spurious pressures taking the

form of a checkerboard may be present in certain situations. We had a hard
time trying to find cases where a checkerboard appeared with a manufactured
solution. It is a lot easier to illustrate this catastrophic situation by simply com-
pressing a cubic domain (k = 1000) by imposing Dirichlet boundary conditions
on the two opposite faces (not illustrated).

The MINI element is hardly used in solids analysis, because the stress pre-
dictions are obviously too poor for the effort involved. The velocity bubble can
be statically condensed out but this is not possible for the pressure since it is
continuous. It only has found some use in fluids analysis and was considered
here only as an example of a stable low order element. Although we have ob-
served linear convergence for this element, it has major drawbacks. On general
meshes, obtained by dividing hexahedra into 6 tetrahedra (equivalent to the
division of a quadrangle into two triangles in two dimensions), the pressure is
polluted by oscillations (not illustrated) whose amplitude tends towards 0 as
the mesh is refined.

6.4.2. Second order elements
From Fig. 7, the best choice is the Q20

2 − Q1 element. This element suffers
however from the same weakness on general hehahedral meshes as the Q20

2 in the
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Figure 7: Mixed formulation: relative error on σ(L2-norm) as a function of the number of
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displacement formulation. The explanation is exactly the same and we cannot
recommand its use in general.

All other second order elements presents interesting performances. Both
Crouzeix-Raviart elements (P+

2 −PK
1 and Q2−PK

1 ) are slightly disadvantaged
by their large number of DOFs but they still perform rather well. From the
overall results of Fig. 7, we can advocate the use of these elements for nearly
incompressible large deformation problems. They perform extremely well on all
aspects of our study: accuracy, CPU time, memory space, etc.

6.4.3. Using discontinuous pressure
Elements with discontinuous pressure are very advantageous since it can be

statically condensed out. This makes them extremely efficient. We confirm the
results of [14] that using the Q2−PK

1 (linear pressure on K) gives better results
than with the Q2 − P K̂

1 (linear pressure on K̂). The slopes of the convergence
curves on the pressure (not illustrated) were 2.61 and 1.52 respectively.

6.4.4. Enriching the pressure discretization space
Comparing the accuracy of the P2−P1 and P+

2 −PK
1 elements, we found, on

some manufactured solutions, that the level of error on the pressure was higher
for the latter (and richer) element (see Fig. 8). The explanation comes from
the observation already made that a richer approximation for the pressure leads
to a smaller value of α in the inf-sup condition (12). We have also observed
that the discretization error for the pressure is proportional to 1/α2. In order
to confirm that this explanation is valid, we have compared the errors obtained
with the P+

2 −PK
1 and the P+

2 −P1 elements. The only difference between these
two elements is the pressure space which is larger for the PK

1 . Fig. 8 shows that
the corresponding error is also larger.

6.4.5. The H1-seminorm of ph as an oscillation indicator
During the course of our numerical experiments, it appeared that comput-

ing the H1-seminorm of the error on the pressure was a convenient measure of
oscillating pressures. This is easy to compute for continuous pressure approxi-
mations but it cannot be done directly if the pressure is discontinuous. In this
last case, the pressure can be projected in L2-norm onto a richer continuous
approximation space like Q2 or P2. To observe oscillations in the pressure, and
in particular for the Q1−P0 element, it is essential to use a manufactured solu-
tion with detF slightly different from 1, a bulk modulus k of at least 1000 and
meshes with randomly perturbed nodes. Computations with these parameters
were done, the seminorm has been computed and the results are presented in
Fig. 9.

On this graph, we can see that all elements that may present problems
display non-optimal convergence. MINI and the Q1 − P0 do not converge and
this is also the case for the Q2 −P K̂

1 element. The Q20
2 −Q1 converge but with

a lower rate than the other quadratic elements.
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Even though the theory does not say anything about the convergence of the
pressure in this norm, we can say that computing the H1-seminorm of the pres-
sure underlines the differences in the behavior of the different discretizations.
It may thus be used as a simple indicator to test mixed finite element dis-
cretizations, and in particular to detect checkerboards effects or more generally,
oscillating pressures.

7. Conclusions

The method of manufactured solutions offers a systematic strategy to verify
a finite element software and to establish experimentally the convergence order
of a given discretization. In this paper, it was also used to compare various
discretizations among them. Methodic use of the method of manufactured solu-
tions makes it possible to detect the weaknesses of the different discretizations
and to clearly establish which elements are suitable to a particular finite element
formulation.

In the presented test cases, first order elements such as P1 and the Q1 ele-
ments in the displacement only formulation, or the MINI, the P1 − P0 and the
Q1−P0 elements in displacement-pressure formulation were shown to give large
error norms even on the finest meshes. The MINI element, in particular, per-
forms rather poorly. Satisfying the inf-sup condition is therefore not a sufficient
condition to decide on the usefulness of an element.

We have demonstrated experimentally that incomplete polynomial spaces
on non affine meshes may lead to suboptimal convergence. Linear (on the real
element) discontinuous pressure PK

1 performed better that the linear (on the
reference element) P K̂

1 .
We have shown that second order elements present many advantages in terms

of accuracy and computational efficiency. These conclusions were already ob-
tained in Bathe [5, 23]. Rigorous comparisons of various discretizations in terms
of DOFs, memory consumption or CPU time led to the conclusion that second
order elements are best and in particular, the P2 and Q2 elements for displace-
ment only formulation and the P2 − P1 or Q2 − PK

1 mixed elements are very
good choices in general. In all aspects, second order elements perform better
than first order ones, at least for regular solutions.

We would like to emphasize that when using general (non affine) meshes,
the performances of tetrahedral and hexahedral elements of the same order
are similar. It shows that tetrahedra are also well suited for large deformation
problems. It is now possible to find good hexahedral meshers, though it is fair to
say that meshing a complex three-dimensional geometry is still easier to do with
a tetrahedral mesher. Most of the time, mesh adaptation is based on tetrahedra
even though it is possible to locally adapt a hexahedral mesh. It is however
very difficult to introduce anisotropic adaptation using hexahedra. Anisotropic
meshes, which include elements with very large aspect ratio, would help to
improve the accuracy of numerical solutions, while reducing the computational
burden and this leads us to favor tetrahedral discretizations.
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We are now extending the method of manufactured solution to frictional
contact problems. Various discretizations of the displacement, pressure and
contact forces can be compared. Preliminary results on unilateral contact are
promising showing the usefulness of this approach (see Chamberland et al. [24]).
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