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Abstract. This paper deals with the modeling of linear viscoelastic behavior and strain accumulation
(accelerated creep) during moisture content changes in timber. A generalized Kelvin–Voigt model is
used and associated in series with a shrinkage-swelling element depending on the mechanical and
moisture content states of materials. The hygrothermal aging due to climatic variations implies an
evolution of rheological parameters depending upon moisture content and temperature. Two distinct
viscoelastic laws, one for drying and the other for moistening, are coupled according to the thermo-
dynamic principles when wood is subjected to nonmonotonous moisture variations. An incremental
formulation of behavior is established in the finite element program CAST3M (Software developed
by C.E.A. (Commissariat á l’Energi Atomique) and an experimental validation from tension creep-
recovery tests is presented.
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1. Introduction

Wood is a porous, hygroscopic, anisotropic and nonhomogenous biopolymer of
cellular structure. It is classified as a viscoelastic material with mechanical proper-
ties depending on temperature and moisture content (Cariou, 1987; Genevaux and
Guitard, 1988). The latter has indeed a prevalent effect compared to temperature.
Creep’s effects are an important factor for the design and the durability of timber
structures. The evolution of creep results from the interactions between the mechan-
ical stress and the internal moisture whose variations cause its acceleration. Much
work has been done on the subject since the early 1960s (Armstrong and Kingston,
1960). A review of work was given by Grossman (1976), Morlier (1994), and Hunt
(1999). The phenomenon called “Mechanosorption” has a chemical origin par-
tially linked to the behavior of molecular bonds but the real mechanism is not yet
well established. Phenomenological models are developed but they are often vali-
dated for a specific type of load (Ranta-Maunus, 1975; Bazant, 1985; Mukuday and
Yata, 1986; Gril, 1988; Hunt, 1988; Toratti, 1992; Martensson, 1992; Salin, 1992;
Hanhijarvi, 2000) and are not easily generalized for other conditions or problems.
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Our objective is to model the viscoelastic behavior of wood according to the ther-
modynamic principles. This viscoelastic approach allows a satisfying decoupling
of the different phenomena during creep under variable climate conditions.

In the first section, a new hygromechanical numerical modeling of wood vis-
coelasticity is presented, integrating the hereditary effects (strain–stress history)
and the environmental effects (moisture content and temperature). Based on the
thermodynamic principles, the environmental effects are taken into account in the
generalized Kelvin–Voigt model. The second section deals with an incremental for-
mulation, implemented in a finite element program, which is obtained by integrating
differential equations of models with a finite time difference method.

In the third section, an experimental validation is proposed from creep-recovery
tests carried out by Pittet (1996) on thin specimens subjected to a longitudinal
tension loading and moisture variations.

2. Generalized Kelvin–Voigt Model

In order to introduce environmental effects (hygrothermal aging) in viscoelastic
behavior, we propose a rheological approach adapted to wood material.

2.1. CONSTITUTIVE LAW: RHEOLOGICAL APPROACH

In the classical treatment of the aging linear viscoelastic behavior (Bazant et al.,
1999), the stress–strain relationship is given by the classical Stiljes–Volterra inte-
gral:

ε=(t) =
t∫

0−

J(t, τ )
∂ σ=

∂τ
dτ or σ= (t) =

t∫

0−

R(t, τ )
∂ ε=

∂τ
dτ (1)

J, R, σ= , and ε= represent the fourth-order tensors of the compliance and relaxation
functions and the second-order stress and strain tensors, respectively. In a nonaging
case, the compliance and relaxation functions are reduced to J(t, τ ) = J(t − τ )
and R(t, τ ) = R(t − τ ). Some authors admit a power law (or parabolic law) of
the nonaging creep evolution (Cariou, 1987; Huet, 1988; Le Govic et al., 1988).
This interpolation presents the advantage of obtaining a compliance tensor with few
parameters to be identified. However, this technique is accurate enough for limited
times and prohibits physical and thermodynamic interpretations of behavior. In this
context, we prefer a rheological model consisting of springs and dashpots developed
from a more rigorous thermodynamic approach. The generalized Maxwell model
requires an identification based on relaxation tests. For wood material, creep tests
lead us to opt for the generalized Kelvin–Voigt model. In order to simplify the
presentation, we propose in Figure 1 a uniaxial model, where σ and ε are uniaxial
stress and strain, respectively.
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Figure 1. Generalized Kelvin–Voigt model in series with a moisture induced shrinkage–
swelling element.

In order to take into account all the phenomena during the creep of wood in vari-
able climate conditions, our model is composed of an isolated spring representing
the instantaneous response ε(0). Kelvin–Voigt cells define the primary creep ε(m).
According to models with combined activation, (Hunt, 1999; Bazant, 1985; Gril,
1988), all springs and dashpots properties have a moisture content dependence. On
the other hand, the last element represents moisture-induced shrinkage–swelling
ε(w) depending on mechanical and moisture states of material. This last effect is
assumed to be independent like models with independent activation, (Leicester,
1971; Ranta-Maunus, 1975; Hunt, 1988).

The total strain ε(t) is then written in the following form:

ε(t) = ε(0)(t) +
M∑

m=1

ε(m)(t) + ε(w)(t) (2)

The viscoelastic strain ε(ve) = ε(0) + ∑M
m=1 ε(m) is the strain of the general-

ized Kelvin–Voigt model. In the uniaxial case of nonaging linear viscoelastic
behavior, 1 Volterra’s integral (1) is written as follows:

ε(ve)(t) =
t∫

0−

J (t − τ )
∂σ

∂τ
dτ (3)

with J (t − τ ) = 1
k(0) + ∑M

m=1
1

k(m) (1 − e−λ(m)(t−τ )), λ(m) = k(m)

η(m)

The spring modulus noted k(p), p ∈ (0, 1, . . . , m, . . . , M) and dashpot viscosi-
ties noted η(q), q ∈ (1, . . . , m, . . . , M) must be constant and positive.

The aging phenomenon appears as a variation of mechanical characteristics
(stiffness, viscosity, etc., . . .) over time at the macro-level of material description.
For wood, the aging origin is due to the climate variation over time. Thus, the
characteristics of each rheological element depend on moisture content at constant
temperature. The modulus of aging spring k(p) (w) is defined from the function
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b(p) (w) and the modulus reference k(p)
ref corresponds to moisture content reference

wref such as:

k(p)(t) = b(p)(t)k(q)
ref with

b(p)(w(t)) = b(p)(t), b(p)(wref) = 1, k(p)
ref > 0 (4)

The wood’s overall stiffness increases (hardening) during water desorption and
decreases (softening) during absorption. The function ḃ(p)(t) is thus positive with
drying and negative with moistening. In the same way, the aging dashpot’s viscosity
η(q)(w) depends on moisture content w through a function a(q)(w) and a viscosity
reference η

(q)
ref associated with the moisture content reference wref such as:

η(q)(t) = a(q)(t)η(q)
ref with

a(q)(w(t)) = a(q)(t), a(q)(wref) = 1, η
(p)
ref > 0 (5)

2.2. THERMODYNAMIC RESTRICTIONS

The compliance function J (t, τ ) is thermodynamically admissible if thermody-
namic laws are satisfied. At macroscopic level, it is translated by the conditions:

J (t, τ ) ≥ 0,
∂ J (t, τ )

∂t
≥ 0,

∂ J (t, τ )

∂t
≤ 0 and

∂2 J (t, τ )

∂t∂τ
≤ 0 (6)

Thermodynamic laws are checked against the compliance function J (t, τ ) if
they are also satisfied for the rheological model. Nevertheless, if the thermody-
namic conditions are violated by the rheological model, they may, but need not,
be violated, by the compliance function. In order to be sure that the compliance
function is correct, it is thus highly desirable, although not required that the ther-
modynamic conditions be satisfied by the rheological model. Thus, all springs and
all dashpots composing the rheological model must satisfy the thermodynamic
conditions, i.e. the dissipation (dissipated power) has to be positive in each ba-
sic rheological element. In this context, Bazant has demonstrated that two distinct
constitutive laws are necessary to define the aging spring behavior (Bazant, 1979;
Bazant et al., 1993). Hooke’s law (7) for the softening spring behavior and the
tangent law (8) for the hardening spring behavior are as follows

σ (p)(t) = b(p)(t)k(p)
ref ε

(p)(t), ḃ(p)(t) < 0 : Softening (7)

σ̇ (p)(t) = b(p)(t)k(p)
ref ε̇

(p)(t), ḃ(p)(t) > 0 : Hardening (8)

The aging dashpot is always defined by Newton’s law:

σ (q)(t) = a(q)(t)η(q)
ref ε̇

(q)(t) (9)
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2.2.1. Second Principle of Thermodynamics
The thermodynamic state of the material is defined by free energy ψ in terms of
observable variables, i.e., elastic strain tensor εe, temperature T and a set of internal
variables �(n), n ∈ (1, 2, . . . , N ) such as:

ψ = ψ(εe, T, �(1), . . . , �(N )) (10)

The latter are associated with the dissipation of the mechanical work into heat
related to the irreversible material behavior. The Clausius–Duhem inequality ex-
presses the second principle of thermodynamics, which stipulates a positive dissi-
pation Dtot.

Dtot = σ : ε̇an −
N∑
1

A(n)�̇(n) − −→q ·
−→∇ T

T
≥ 0 (11)

εan = ε − εe represents the anelastic strain and A(n) the thermodynamic force
associated with the internal variable �(n).

2.2.2. Thermodynamic Restrictions for Aging Spring
The aging spring behavior is associated with the modulus variation over time. Aging
involves dissipation of a part of the mechanical energy provided by the spring. In
the formulation of the Helmholtz specific free energy noted ψ , we take the tensor
of elastic strain εe and the temperature T as state variables, and the aging parameter
b(t) as an internal variable, such as ψ = ψ(εe, T, b). For an aging spring, the free
energy ψ is always defined by the relationship:

ψ = 1

2ρ
b(t)kref(ε

e(t))2 (12)

where, kref is the modulus reference. The intrinsic dissipation is deduced from the
Clausius–Duhem inequality by considering only one internal variable b associated
with the thermodynamic force A, such as:

Dtot = σ : ε̇an − Aḃ − −→q
−→∇ T

T
≥ 0 (13)

with the following state equations:

σ = ρ
∂ψ

∂εe
, s = −∂ψ

∂T
and A = ρ

∂ψ

∂b
(14)
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Softening spring behavior: The softening spring behavior is defined by Hooke’s
law:

ε(t) = σ (t)

b(t)kref
with ε(t) = εe(t) + εan(t) (15)

By definition, the elastic strain εe is defined as the strain increment observed
during an instantaneous unloading (at this time the climatic conditions are constant).
Thus, the elastic strain εe will always be defined by the following relationship:

εe(t) = σ

b(t)kref
and εe(t) = σ̇ (t)

b(t)kref
− ḃ(t)σ (t)

b2(t)kref
(16)

The anelastic strain εan is deduced from relationships (15) and (16):

εan(t) = ε(t) − εe(t) = 0 (17)

From the experession of the free energy (12) and the expression (14), the ther-
modynamic force A associated with the internal variable b is defined by:

A = 1

2
kref(ε

e(t))2 = σ 2(t)

2b2(t)kref
(18)

By substituting the relationships (17) and (18) in the Clausius–Duhem inequality
(13) and supposing a homogeneous variation of the temperature (

−→∇ T = 0), the
total dissipation from (13) can be simplified by:

DkS = − ḃ(t)σ 2(t)

2b2(t)kref
≥ 0 (19)

When spring modulus depends on time, k(t) = b(t) kref, kref ≥ 0, the inequality
(19) imposes:

ḃ(t) ≤ 0 (20)

Finally, the inequality (20) demonstrates that the Hooke’s law can be used for soft-
ening behavior. In this case, it is necessary to employ an adapted law for hardening
behavior.

Hardening spring behavior: The constitutive law of the hardening spring be-
havior must be represented by the tangent law proposed by Bazant (1979):

ε̇(t) = σ̇ (t)

b(t)kref
with ε̇(t) = ε̇e(t) + ε̇an(t) (21)
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As previously, the elastic strain εe is obtained during an instantaneous unloading
and always defined by the relationship:

εe(t) = σ

b(t)kref
with ε̇e(t) = σ̇ (t)

b(t)kref
+ ḃ(t)σ (t)

b2(t)kref
(22)

Considering the relationships (21) and (22), the anelastic strain rate ε̇an can be
expressed by:

ε̇an(t) = ε̇(t) − ε̇e(t) = ḃ(t)σ

b2(t)kref
(23)

In a softening spring assumption, the variable A is deduced from the free energy
(12) and the relationship (14):

A = ρ
∂ψ

∂b
= 1

2
kref(ε

e(t))2 = σ 2(t)

2b2(t)kref
(24)

According to the definition of A for softening and hardening behavior, Equations
(18) and (24), respectively, we can conclude that a positive or negative variation
of moisture content, in a constant loading configuration, has the same effect about
the free energy variation. The most important effect is the movement of link water
molecules.

By introducing expressions (23) and (24) in the Clausius–Duhem inequality
(13) and assuming a homogeneous temperature variation (

−→∇ T = 0), we obtain the
following total dissipation for a hardening spring behavior:

DkH = σ : ε̇an − Aḃ = ḃ(t)σ 2(t)

2b2(t)kref
≥ 0 (25)

In this case, when the spring modulus varies over time, k(t) = b(t) kref and
kref ≥ 0, the inequality (25) is checked if:

ḃ(t) ≥ 0 (26)

The spring modulus k is always positive and the use of the tangent law is only
validated for a hardening spring behavior. We remark that the dissipation for an
aging spring is given by:

Dk = |ḃ(t)|σ 2(t)

2b2(t)kref
≥ 0 (27)
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2.2.3. Thermodynamic Restrictions for Aging Dashpot
The aging dashpot behavior is translated by the viscosity variation over time and it
is always defined by Newton’s law (67):

σ (t) = a(t)ηrefε̇(t) and ε̇(t) = ε̇e(t) + ε̇an(t) (28)

The free energy and the elastic strain are zero (ψ = 0, εe = 0). The relationship
(67) is then written as:

σ̇ (t) = a(t)ηrefε̇
an(t) (29)

Moreover, if the free energy is zero, the thermodynamic force associated with
b is also zero (A = 0). For transformation at a homogeneous temperature, the
Clausius–Duhem inequality (68) is reduced to:

Dη = σ : ε̇an = σ 2(t)

a(t)ηref
≥ 0 (30)

If we assume that dashpot viscosity is constant (ȧ(t) = 0) and taken as reference
(ηref, a = 1), the Clausius–Duhem inequality (30) is validated if:

ηref ≥ 0 ∀ wref (31)

When dashpot viscosity varies over time, η(t) = a(t)ηref and ηref ≥ 0, the
inequality (30) induces:

a(t) ≥ 0 (32)

In conclusion, the reference viscosity ηref is always positive and Newton’s law
is always satisfied thermodynamically if the dashpot viscosity is positive.

2.3. AGING VISCOELASTIC BEHAVIOR

2.3.1. Constitutive Law for Softening Viscoelastic Material
This section deals with an aging rheological viscoelastic model whose spring stiff-
ness decreases over time (increase of moisture content). In order to develop the
corresponding integral formulation, it is necessary to introduce the basic laws (9)
and (7) for each spring and each dashpot composing the rheological model. Ac-
cording to the law (7), the instantaneous elastic strain is expressed in the following
form:

ε(0)(t) = 1

k(0)
ref

σ (t)

b(0)(t)
(33)
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Figure 2. Stress decomposition.

We can introduce the derivation form of the stress expression as follows:

σ (t) =
∫ t

0−

∂σ (τ )

∂τ
dτ (34)

Introducing the form (34) in the Equation (33), we obtain (t and τ are independent
variables):

ε(0)(t) =
∫ t

0−
J (0)

a (t, τ )
∂σ (τ )

∂τ
dτ with J (0)

a (t, τ ) = 1

b(0)(t)k(0)
ref

(35)

The strain expression of each Kelvin–Voigt cell is deduced from the stress
decomposition (36) in Figure 2.

σ (t) = σ
(m)
k (t) + σ (m)

η (t) (36)

By substituting the relationships (9) and (7) in the Equation (36), we obtain the
following differential equation:

ε̇(m) +
(

b(m)

a(m)
λ

(m)
ref

)
ε(m) = σ

a(m)η
(m)
ref

with λ
(m)
ref = k(m)

ref

η
(m)
ref

(37)

The resolution of the Equation (37) enables us to calculate the strain of each
Kelvin–Voigt cell:

ε(m)(t) =
∫ t

0−
J (m)

a (t, τ )
∂σ (τ )

∂τ
dτ,

with

J (m)
a (t, τ ) =

∫ t

τ

e
−λ

(m)
ref

∫ t
ϑ

b(m)(µ)
a(m)(µ)

dµ

a(m)(ϑ)η(m)
ref

dϑ (38)
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2.3.2. Constitutive Law for Hardening Viscoelastic Material
In order to take into account the spring modulus which increases when the wood
moisture content decreases, we take the decomposition of strains (2) and stresses
(36). The instantaneous response is expressed by integrating the constitutive equa-
tion of the hardening spring behavior (8). This adapted form is:

∂ε(0)

∂τ
= 1

b(0)(τ )k(0)
ref

∂σ

∂τ
(39)

Integrating the expression (39), we obtain:

ε(0)(t) =
∫ t

0−
J (0)

r (t, τ )
∂σ (τ )

∂τ
dτ with J (0)

r (t, τ ) = 1

b(0)(τ )k(0)
ref

(40)

By comparing the expressions (35) and (40), we can observe that the softening
law integrates the past history of stresses and the hardening law must integrate in
the same time the past history of material properties.

The strain calculation of each Kelvin cell is also carried out by substituting the
basic laws (9) and (8) in (36). We thus obtain a second-order differential equation
such as:

ε̈(m)(t) +
(

b(m)(t)

a(m)(t)
λ

(m)
ref + ȧ(m)(t)

a(m)(t)

)
ε̇(m)(t) = σ̇ (t)

a(m)(t)η(m)
ref

(41)

The resolution of the Equation (41) is carried out in two steps. A first integration
allows us to define the following rate of strain:

ε̇(m)(t) =
∫ t

0−

e
−λ

(m)
ref

∫ t
τ

b(m)(µ)
a(m)(µ)

dµ

a(m)(t)η(m)
ref

∂σ (τ )

∂τ
dτ (42)

A second integration enables us to obtain the strain ε(m), such as:

ε(m)(t) =
∫ ϑ=t

ϑ=0




∫ τ=ϑ

τ=0

e
−λ

(m)
ref

∫ ϑ

τ
b(m)(µ)
a(m)(µ)

dµ

a(m)(ϑ)η(m)
ref

∂σ (τ )

∂τ
dτ


 dϑ (43)

By substituting the integration order, the integral (43) with ϑ ∈ [0, t] and
τ ∈ [0, ϑ] is the same as the integral (44) with τ ∈ [0, t] and ϑ ∈ [τ, t]:

ε(m)(t) =
∫ τ=t

τ=0




∫ ϑ=t

ϑ=τ

e
−λ

(m)
ref

∫ ϑ

τ
b(m)(µ)
a(m)(µ)

dµ

a(m)(ϑ)η(m)
ref

dϑ


 ∂σ (τ )

∂τ
dτ (44)
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The compliance function J (m)
τ (t, τ ) is deduced from the relationship (44), such

as:

ε(m)(t) =
∫ t

0−
J (m)

r (t, τ )
∂σ (τ )

∂τ
dτ,

with

J (m)
r (t, τ ) =

∫ t

τ

e
−λ

(m)
ref

∫ ϑ

τ
b(m)(µ)
a(m)(µ)

dµ

a(m)(ϑ)η(m)
ref

dϑ (45)

Finally, the comparison of strain expressions (38) and (45) shows us the dif-
ferences for the past history integration of stresses and material properties for a
softening and a hardening law. However, the main difficulty is the coupling be-
tween these two behaviors in variable moisture content conditions.

2.4. MOISTURE-INDUCED SHRINKAGE−SWELLING

In the hygroscopic field, an increase and decrease of moisture content generates
a swelling and shrinkage, respectively. If this phenomenon is observed without
mechanical loading through the free strains, this is modified when the structure is
loaded (Hunt, 1984, 1988). This process highlights a coupling between the moisture
variations and the mechanical state. The shrinkage–swelling strain, noted ε(w), is
expressed by the following formulation:

�ε(w)
n =

∫ tn

tn−1

[
α(t − τ ) + mε(ve)(τ )

] ∂w

∂τ
dτ

with

α(t) = α(0) +
M∑

m=1

α(m)
(

1 − e−λ(m)
α t

)
(46)

α(t) is the uniaxial coefficient of free shrinkage-swelling and m is the
mechanosorptive coefficient showing the coupling between shrinkage–swelling and
viscoelastic strain ε(ve). The coefficient m also translates the difference in ampli-
tude between the shrinkage strain and swelling strain under stress (Ranta-Maunus,
1975), such as:

m =
{

m H if ẇ(t) > 0 : moistening
mS if ẇ(t) < 0 : drying

2.5. INTEGRAL FORMULATION OF TOTAL STRAIN

2.5.1. Softening Material
From the total strain decomposition (2) and the relationships (33), (38), an integral
form of the total strain is deduced:
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ε(t) =
∫ t

0−

(
J (0)

a (t, τ ) +
M∑

m=1

J (m)
a (t, τ )

)
∂σ (τ )

∂τ
dτ

+
∫ t

0−
α(t − τ )

∂w(τ )

∂τ
dτ +

∫ t

0−
mε(ve)(τ )

∂w(τ )

∂τ
dτ (47)

2.5.2. Hardening Material
In the same way, from the relationships (2), (40) and the integration of (42), the
total strain is written as follows:

ε(t) =
∫ t

0−

(
J (0)

r (t, τ ) +
M∑

m=1

J (m)
r (t, τ )

)
∂σ (τ )

∂τ
dτ

+
∫ t

0−
α(t − τ )

∂w(τ )

∂τ
dτ +

∫ t

0−
mε(ve)(τ )

∂w(τ )

∂τ
dτ (48)

3. Incremental Formulation

Some works (Zienkiewicz et al., 1968) show a direct integration of the integral
formulations similar to the expression (1) in a finite element code. However, the
calculation of this integral function supposes the knowledge of the total history of the
various fields. For the long-term prediction of the evolution of complex structures,
this method encounters a problem of computer memory. In order to overcome this
difficulty, we propose an explicit incremental formulation, which enables us to
calculate the evolution of the various mechanical fields in an incremental time step
while carrying out an equivalent storage in fields updated to each calculation step.
Between two times tn−1 and tn , we can express the total strain decomposition (2)
in an incremental form:

�εn = �ε(ve)
n + �ε(w)

n (49)

with

�ε(ve)
n = �ε(0)

n +
M∑

m=1

�ε(m)
n and �εn = ε(tn) − ε(tn−1)

Thus, the various increments of this decomposition for the hardening and
softening cases are defined. The strain increment �ε(w)

n is common to both
formulations.
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3.1. INCREMENTAL FORMULATION OF THE SOFTENING VISCOELASTIC

LAW

The instantaneous strain increment �ε(0)
n is obtained by considering the derivative

of the integral form (33):

dε(0)

dt
= 1

k(0)
ref

d

dt

(
σ (t)

b(0)(t)

)
= 1

k(0)
ref

d

dt

(
c(0)(t)σ (t)

)

with

c(0)(t) = 1

b(0)(t)
(50)

By integrating the expression (50) between times tn−1 and tn , we deduce the
relationship:

�ε(0)
n =

∫ tn

tn−1

dε(0)(τ )

dτ
dτ = 1

k(0)
ref

∫ tn

tn−1

∂

∂T

(
c(0)(τ )σ (τ )

)
dτ (51)

In order to integrate the expression (51) with acceptable precision, we suppose
a linear form of σ and c(0) between times tn−1 and tn such as:

c(0)(t) = c(0)(tn−1) + �c(0)
n

tn − tn−1

and

σ (t) = σ (tn−1) + �σn

tn − tn−1
(52)

Introducing relations (53) in (51), we obtain the following incremental equation:

�ε(0)
n = M (0)

a �σn + ε̃(0)
a (53)

with

M (0)
a = c(0)(tn−1) + �c(0)

n

k(0)
ref

and

ε̃(0)
a = �c(0)

n

k(0)
ref

σ (tn−1) (54)
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The strain increment of each Kelvin cell is obtained by assuming, in the formulation
(38), the following variable change:

φ =
∫ t

0

b(m)(ζ )

a(m)(ζ )
dζ and φ − φ′ =

∫ t

τ

b(m)(ζ )

a(m)(ζ )
dζ (55)

φ is the reduced time. By substituting (55) in relationship (38), we obtain:

ε(m)(tn) =
∫ φ

(m)
n−1

0

e−λ
(m)
ref (φ(m)

n −φ′)

n(m)
ref

c(m)(φ′)σ (φ′)dφ′

+
∫ φ

(m)
n

φ
(m)
n−1

e−λ
(m)
ref (φ(m)

n −φ′)

n(m)
ref

c(m)(φ′)σ (φ′)dφ′ (56)

with

c(m)(τ ) = 1

b(m)(τ )

The relationship (56) can be transformed while revealing the term of strain
calculated at time tn−1:

ε(m)(tn) = e−λ
(m)
ref �φ

(m)
n ε(m)(tn−1)

+
∫ φ

(m)
n

φ
(m)
n−1

e
−λ

(m)
ref

(
φ

(m)
n −φ′

)

η
(m)
ref

c(m)(φ′)σ (φ′)dφ′ (57)

Thus, the strain increment is written according to the formulations (49) and (57)
by the relationship:

�ε(m)
n =

(
e−λ

(m)
ref �φ

(m)
n − 1

)
ε(m)(tn−1)

+
∫ φ

(m)
n

φ
(m)
n−1

e−λ
(m)
ref

(
φ(m)

n − φ′)
η

(m)
ref

c(m)(φ′)σ (φ′)dφ′ (58)

With the hypothesis of linear form of σ and c(m), see adapted expressions (52)
for the reduced time interval [φn−1, φn], the strain increment �ε(m)

n is given by:

�ε(m)
n = M (m)

a �σn + ε̃(m)
a (59)
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with

M (m)
a = c(m)(tn−1)

k(m)
ref

B(m) + �c(m)
n

k(m)
ref

C (m)

ε̃(m)
a = σ (tn−1)

(
c(m)(tn−1)

k(m)
ref

A(m) + �c(m)
n

k(m)
ref

B(m)

)
− ε(m)(tn−1)A(m) (60)

and

A(m) = 1 − e−λ
(m)
ref �(m)

n

B(m) = 1 − 1

λ
(m)
ref �φ

(m)
n

(
1 − e−λ

(m)
ref �φ

(m)
n

)

C (m) = 1 − 2

λ
(m)
ref �φ

(m)
n

(
1 − 1

λ
(m)
ref �φ

(m)
n

(
1 − e−λ

(m)
ref �φ

(m)
n

))

�φ(m)
n = φ(m)

n − φ
(m)
n−1 (61)

3.2. INCREMENTAL FORMULATION OF THE HARDENING

VISCOELASTIC LAW

The derivative of the instantaneous strain ε(0)(t) is developed using the expression
(40) in the following way:

dε(0)

dt
= c(0)(t)

k(0)
ref

dσ

dt
with c(0)(t) = 1

b(0)(t)
(62)

The integration of the expression (62) gives the following equation:

�ε(0)
n =

∫ tn

tn−1

dε(0)(τ )

dτ
dτ = 1

k(0)
ref

∫ tn

tn−1

c(0)(τ )
∂σ (τ )

∂τ
dτ (63)

Assuming the similar linear form of σ and c(0) between the times tn−1 and tn ,
proposed in expressions (52), the Equation (63) is written as follows:

�ε(0)
n = M (0)

r �σn + ε̃(0)
r u (64)

with

M (0)
r = 1

k(0)
ref

(
c(0)(tn−1) + �c(0)

n

2

)

ε̃(0)
r = 0 (65)
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The calculation of the strain increment of the mth Kelvin–Voigt cell is carried
out by developing the differential Equation (41):

�ε(m)
n =

∫ tn

tn−1

∂ε(m)(τ )

∂τ
dτ =

∫ φ
(m)
n

φ
(m)
n−1

∂ε(m)(φ′)
∂φ′ dφ′ (66)

As previously observed, the notation φ is the reduced time, which is given by the
Equation (55). The introduction of the reduced time into the Equation (42) allows
us to write:

∂ε(m)(φ)

∂φ
= c(m)(φ)

η
(m)
ref

∫ φ

0
e−λ

(m)
ref (φ−φ′) ∂σ

∂φ′ dφ′ (67)

We solve the Equation (67) and introduce it in a relationship (66); so �εn(m) is
defined by:

�ε(m)
n =

∫ φ
(m)
n

φ
(m)
n−1

c(m)(φ)

η
(m)
ref

σ (φ)dφ

− λ
(m)
ref

η
(m)
ref

∫ φ
(m)
n

φ
(m)
n−1

(
c(m)(φ)

∫ φ

0
e−λ

(m)
ref (φ−φ′)σ (φ′)dφ′

)
dφ (68)

Assuming a linear form of σ and c(m), in the reduced time interval [φn−1, φn],
we obtain:

�ε(m)
n = M (m)

r �σn + ε̃(m)
r (69)

with

M (m)
r = c(m)(tn−1)

k(m)
ref

B(m) + �c(m)
n

2k(m)
ref

E (m)

ε̃(m)
r = σ (tn−1)

(
c(m)(tn−1)

k(m)
ref

A(m) − �c(m)
n

k(m)
ref

D(m)

)

+ ε̃(m)(tn−1)
(−c(m)(tn−1)A(m) + �c(m)

n D(m)
)

(70)

and A(m), B(m), and C (m) are defined by the relationships (61),

D(m) = e−λ
(m)
ref �φ

(m)
n

(
1 + 1

λ
(m)
ref �φ

(m)
n

)
− 1

λ
(m)
ref �φ

(m)
n

E (m) = 1 − 2

λ
(m)
ref �φ

(m)
n

D(m) (71)
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ε̃(m) is the viscoelastic strain of nonaging material at the moisture reference wref,
such as:

ε̃(m)(t) =
∫ t

0

e−λ
(m)
ref (t−τ )

ηref
σ (τ )dτ (72)

The strain increment �ε̃(m) is similar to �ε(m)
n with c(m)(tn−1) = 1 and �c(m)

n = 0.

�ε̄(m)
n = M (m)

r ε̄ �σn + ε̃
(m)
τ ε̄ (73)

with

M (m)
τ ε̄ = B(m)

k(m)
ref

ε̃
(m)
τ ε̄ = σ (tn−1)

A(m)

k(m)
ref

− ε̃(tn−1)A(m) (74)

3.3. INCREMENTAL FORMULATION OF SHRINKAGE---SWELLING

The strain increment �ε(w)
n of shrinkage–swelling under mechanical loading, be-

tween the times [tn−1, tn ,] is given by the relationship:

�ε(w)
n =

∫ tn

tn−1

α(t − τ )
∂w(τ )

∂τ
dτ +

∫ tn

tn−1

mενe(τ )
∂w(τ )

∂τ
dτ (75)

To facilitate the integration of the Equation (75), ε(ve) and w are linear during
the time increment and we deduce from it the following expression:

�ε(w)
n =

[
M (w) + m

(
�ε(ve)

2
+ ε(ve)(tn−1)

)]
�wn + ε̃(w) (76)

with

M (w) = α(0) +
R∑

r=1

α(r )

(
1 − 1

λ
(r )
α

(
1 − e−λ(r )

α �tn
))

(77)

ε̃(w) =
R∑

r=1

α(r )
(

1 − e−λ(r )
α �tn

)
w(tn−1)

+
R∑

r=1

(
e−λ(r )

α �tn − 1
)

ε(w)(tn−1) (78)
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3.4. INCREMENTAL FORMULATION OF THE TOTAL STRAIN

The total strain increment �εn is the sum of the viscoelastic strain increment and
the shrinkage–swelling strain increment. In the case of a softening behavior, it is
calculated by summation of the relationships (53), (59), and (75). At the time of
the hardening phase, this increment rises from the combination of the expressions
(63), (84), and (75). Finally, we obtain:

�εn = M�σn + ε̃ (79)

with

M = Ma, ε̃ = ε̃a : Softening

M = Mr , ε̃ = ε̃r : Hardening (80)

M is the equivalent viscoelastic compliance, which makes it possible to translate
the effect of the linear variation of the stress during the time increment.

Ma =
(

1 + m

2

) (
M (0)

a +
M∑

m=1

M (m)
a

)
(81)

Mr =
(

1 + m

2

) (
M (0)

a +
M∑

m=1

M (m)
a

)
(82)

The environmental effect and the storage of the total history of the mechanical
loading are taken into account as an initial strain noted ε̃.

ε̃a = (
M (w) + mε(ve)(tn−1)

)
�wn

+ (1 + m)

(
ε̃(0)

a +
M∑

m=1

ε̃(m)
a

)
+ ε̃(w) (83)

ε̃r = (
M (w) + mε(ve)(tn−1)

)
�wn

+ (1 + m)

(
ε̃(0)

r +
M∑

m=1

ε̃(m)
r

)
+ ε̃(w) (84)

In the Equation (79), all the terms are given according to reduced time increment
�φn . We assume that the function b(m)

a(m) is linear in the time interval [tn−1, tn]:

��(m)
n =

∫ tn

tn−1

b(m)(µ)

a(m)(µ)
dµ

= �tn
2c(m)(tn)a(m)(tn)

+ �tn
2c(m)(tn−1)a(m)(tn−1)

(85)
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Figure 3. Elastic behavior under moisture cycles.

3.5. BEHAVIOR UNDER NONMONOTONOUS MOISTURE CHANGES

The incremental formulation (79) presents a similar form for softening and hard-
ening. However, the history terms ε̃a and ε̃r are not updated in an identical way.
When the formulation is used in monotonous phase, i.e., simply softening or sim-
ply hardening, the two incremental forms are employed in an uncoupled way
(Randriambololona, 2001). On the other hand, if we wish to model the effects
of nonmonotonous moisture evolution, we have to update the material history so
that it is compatible between the end of drying (hardening) and the beginning of
moistening (softening).

3.5.1. Elastic Behavior
For example, we take an elastic behavior modeled by a spring according to the
relationships (53) and (63).

A tensile test with loading–unloading under modulus variations is represented
in Figure 3. The response is calculated by using the spring constitutive laws and
the superposition principle.

When material is moistened, it softens. During drying, the material hardens.
Under constant load, the strain process is activated by moistening. Without me-
chanical load variation, the strain remains constant. The material keeps in memory
the moisture history during the loading period. The strain is totally reversible if the
moisture variations are the same during loading and unloading. This behavior is
similar to the atypical behavior already presented by Gril (1988) with the hygro-lock
model.
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In order to simulate this behavior, the storage history must be updated between
the softening (80) and the hardening (78) formulations. We must consider the three
following cases:

Case 1: The moisture level never before reached is now exceeded (w(tn) ≥
wmax), the material softens, and the strain increment is defined by:

�ε(0)
x = c(0)(tn)

k(0)
ref

�σx + �c(0)
x

k(0)
ref

σ (tx ) (86)

with tx = t(wmax), �ε(0)
x = ε(0)(tn) − ε(tx ), �σ (0)

x = σ (0)(tn) − σ (tx ), �c(0)
x =

c(0)(tn) − c(tx )
The increment of elastic strain between time tn−1 and tn , is written as:

�ε(0)
n = c(0)(tn)

k(0)
ref

�σn + c(0)(tn)

k(0)
ref

(σ (tn−1) − σ (tx ))

+ � c(0)
x

k(0)
ref

σ (tx ) + ε(0)(tx ) − ε(0)(tn−1) (87)

Case 2: The moisture content is higher than the moisture content reached at the
last moistening, but lower than the maximal moisture content (wmax ≥ w(tn) ≥ wh).
The elastic strain is updated as follows:

�ε(0)
x = c(0)(tn)

k(0)
ref

�σx (88)

The strain increment �ε(0)
n is given by this relationship:

�ε(0)
n = c(0)(tn)

k(0)
ref

�σn + c(0)(tn)

k(0)
ref

(σ(n−1) − σ (tx )) + ε(0)(tx ) − ε
(0)
(tn−1) (89)

Case 3: The moisture content is lower than the moisture content at the last
moistening wh ≥ w(tn). The strain is updated as follows:

�ε
(0)
h = C (0)(tn)

k(0)
ref

�σh (90)

with th = t(wh), �c(0)
h = c(0)(tn) − c(th), �α

(0)
h = σ (0)(tn) − σ (th), �ε

(0)
h =

ε(0)(tn) − ε(th)
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We obtain the increment of elastic strain �εn from the relationship (90), such
as:

�ε(0)
n = c(0)(tn)

k(0)
ref

�σn + c(0)(tn)

k(0)
ref

(σn−1 − σ (th)) + ε(0)(th) − ε(0)(tn−1) (91)

3.5.2. Viscoelastic Behavior
For the viscoelastic behavior, we use the same update as on elastic spring, on the
Kelvin–Voigt cells.

Case 1: The material softens and the viscoelastic strain is updated between time
tx and tn , as follows:

�ε(m)
x = M (m)

ax �σx + ε̃(m)
ax (92)

with

M (m)
ax = c(m)(tx )

k(m)
ref

B(m)
x + �c(m)

x

k(m)
ref

C (m)
x

ε̃(m)
ax = σ (tx )

(
c(m)(tx )

k(m)
ref

A(m)
x + �c(m)

x

k(m)
ref

B(m)
x

)
− ε(m)(tx )A(m)

x (93)

and

A(m)
x = 1 − e−λ

(m)
ref �φ

(m)
x

B(m)
x = 1 − 1

λ
(m)
ref �φ

(m)
x

(
1 − e−λ

(m)
ref �φ

(x)
x

)

C (m)
x = 1 − 2

λ
(m)
ref �φ

(m)
x

(
1 − 1

λ
(m)
ref �φ

(m)
x

(
1 − e−λ

(m)
ref �φ

(m)
x

))

�φ(m)
x = φ(m)

n − φ(m)
x (94)

Case 2: The increment of viscoelastic strain, between time tx and tn , is given by
the following relationship:

�ε(m)
x = M (m)

r x �σx + ε̃(m)
r x (95)

with

M (M)
r x = c(m)(tx )

k(m)
ref

B(m)
x + �c(m)

x

2k(m)
ref

(
1 + 2

λ
(m)
ref �φ

(m)
x

D(m)
x

)
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ε̃(m)
r x = σ (tx )

(
c(m)(tx )

k(m)
ref

A(m)
x + �c(m)

x

k(m)
ref

B(m)
x

)

+ ε̄(m)(tx )
(−c(m)(tx )A(m)

x + �c(m)
x c(m)

x

)
(96)

A(m)
x , B(m)

x , and C (m)
x are defined as in the case 1 (94) and,

D(m)
x = e−λ

(m)
ref �φ

(m)
x

(
1 + 1

λ
(m)
ref �φ

(m)
x

)
− 1

λ
(m)
ref �φ

(m)
x

(97)

Case 3: The viscoelastic strain is updated with regard to the various parameters
at time th , such as:

�ε
(m)
h = M (m)

rh �σh + ε̃
(m)
rh (98)

with

M (m)
rh = c(m)(th)

k(m)
ref

B(m)
h + �c(m)

h

2k(m)
ref

(
1 + 2

λ
(m)
ref �φ

(m)
h

D(m)
h

)

ε̃
(m)
rh = σ (th)

(
c(m)(th)

k(m)
ref

A(m)
h + �c(m)

x

k(m)
ref

B(m)
h

)

+ ε̄(m)(th)
(
−c(m)(th)A(m)

h + �c(m)
h C (m)

h

)
(99)

The expressions of the functions A(m)
h , B(m)

h , C (m)
h , and D(m)

h are the same as the
functions A(m)

x , B(m)
x , C (m)

x , and D(m)
x by substituting �φ(m)

x by �φ
(m)
h .

4. Resolution by the Finite Element Method

4.1. THREE-DIMENSIONAL BEHAVIOR

In order to generalize the uniaxial law as a three-dimensional law, we apply the
superposition principle by taking into account linear behavior. We define the strain
πi jkl in the direction i j generated by uniaxial stress σkl . The strain increment �πi jkl

is defined by:

�πi jkl = Mi jkl�σkl + π̃i jkl (100)

(without summation of k and l)
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We can write the strain tensor component εi j = ∑
k,l πi jkl . We deduce from it the

strain increment:

�εi j =
∑
k,l

�πi jkl (101)

Thus,

�εi j =
∑
k,l

Mi jkl�σkl +
∑
k,l

π̃i jkl (102)

The formulation (102) can also take the following tensorial form:

� ε= = M� σ= + ε̃= (103)

4.2. FINITE ELEMENT FORMULATION

In order to solve the incremental equation (103) by a finite element algorithm,
we employ the method proposed by Ghazlan et al. (1995), which is derived from
the virtual work principle. If the nodal displacement vector increment is noted
{�U (tn)}, the balance equation, in the discretized domain V, can be written as
follows:

KT{�U (tn)} = {�Fext(tn)} + {Fhist(tn−1)} (104)

KT is an equivalent tangent matrix assembled from the tensor M and the strain-
displacement matrix B.

KT =
∫

V
BTM−1B dV (105)

{�Fext(tn)} is the exterior nodal force vector increment during the time intrement
�tn .

{�Fext(tn)} =
∫

V
NT{� fV } dV +

∫
SF

NT{� fS} d S (106)

N (x, y) is the nodal functions matrix, which connects the vector {�u(tn)} dis-
placement field increment within an element V, with the vector {�U (tn)}, so that:

{�u(x, y, tn)} = N(x, y){�U (tn)} (107)
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Figure 4. Clear specimen of maritime pine for tension test.

{Fhist(tn−1)} is a pseudo-load vector which allows us to take into account the
past history of the mechanical loading and the moisture variations. It is given by
the following relationship:

{Fhist(tn−1)} =
∫

V
BTM−1{ε̃(tn−1)} dV (108)

where {ε̃} is the vector obtained from the tensor ε̃= defined in the Gauss points of
the elements. The balance Equation (104) is then established in the finite element
program CAST3M.

5. Application

A great number of numerical validations were carried out in the case of monotonous
evolutions of material moisture (Randriambololona, 2001). To complete this vali-
dation, we have to assume cycles of drying and moistening. We refer to the uniaxial
creep-recovery tests realized by Pittet (1996) on a small clear specimen of maritime
pine l = 30 mm, l = 3 mm, and e = 0.7 mm. Tension in the longitudinal direction
is performed, see Figure 4.

5.1. CREEP AND RECOVERY TEST ON AN INITIALLY DRY SPECIMEN

The specimen is subjected to a constant tension of 18 MPa. Loading is carried out in
a dry state. Two cycles of moisture are realized during the first 14 hr and four others
after unloading, as shown in Figure 5. The small size of the specimen enables us to
assume an homogenous moisture content and an instantaneous balance with climate
conditions. For variations of relative humidity ranging between 30 and 75%, the
moisture content in the specimen is from 4 to 7.62% under a constant temperature
of 21.5◦C.

To decrease the number of parameters, we limit this uniaxial identification in
the longitudinal direction (loading direction). During the initial creep phase in a
dry reference state (wref = 4%) and in a wet reference state (w75 = 7.62%),
the interpolation of the creep function is obtain by using a method of spectrum
decomposition which proposes three Kelvin cells. Table I gives the modulus value
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Figure 5. Mechanosorptive test.

k(p)
ref (MPa) and the viscosity value η

(q)
ref (MPa s). In these conditions, the function

of correction according to the moisture content, b(p) and a(q), can be defined by
imposing a linear evolution versus moisture content between the two levels.

Shrinkage and swelling strain, obtained before and during mechanical loading,
allow us to determine the coefficient of free shrinkage–swelling in longitudinal
direction α = 0, 027% and the parameters of coupling in viscoelastic strain m H =
−0, 1 × 10−2 and mS = −3, 4 × 10−2.

Figure 6 shows that the procedure gives numerical results close to experimental
results. Simulation exhibits the characteristic effect of the first moistening un-
der load, which generates a great increase in strains; an effect that one does not
find with the second moistening. After unloading, under a low moisture content,
residual strains appear, a part of which will be covered during the first moisten-
ing. The residual strains at the end of the test are obtained from the accumulation
of the nonrecoverable strains due to mS with each phase of drying. We observe
an excellent simulation of behavior during the recovery period. Finally, numeri-
cal calculation allows for a decoupling of the various effects (viscoelasticity, free
shrinkage–swelling, and stress influence on shrinkage–swelling) which we could
not realize directly by the experimental results.

Table I. Parameters of the rheological model

Reference state wref = 4% Function of correction

k(0)
ref = 9.5 × 103 b(0) = 1 − 0.066 × (w − 4)

k(1)
ref = 8.6 × 105 b(1) = 1–0.26 × (w − 4)

k(2)
ref = 3.8 × 104 b(2) = 1–0.38 × (w − 4)

k(3)
ref = 5.3 × 104 b(3) = 1–0.131 × (w − 4)

η
(1)
ref = 6.1 × 108 a(1) = 1 − 0.264 × (w − 4)

η
(2)
ref = 2.7 × 108 a(2) = 1–0.079 × (w − 4)

η
(3)
ref = 3.7 × 108 a(3) = 1–0.16 × (w − 4)
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Figure 6. Results of the simulation.

5.2. CREEP AND RECOVERY TEST ON AN INITIALLY WET SPECIMEN

The same type of specimen is subjected to a tension loading of 32 MPa maintained
for 17 hr. Loading is carried out in a wet state. Three cycles of moisture are produced
during the creep phase and three others during the recovery phase, as shown in
Figure 7. For variations of relative humidity between 30 and 75%, the moisture
content in the specimen varies between 4% and 7.62% under a constant temperature
T = 21.5◦C.

Shrinkage and swelling strain, obtained before and during mechanical loading,
enables us to obtain the coefficient of free longitudinal shrinkage and swelling
α = 0.017% and the factors describing the influence of the mechanical state on
the process of shrinkage–swelling m H = −3 × 10−2 and mS = −6, 5 × 10−2.

Figure 7. Mechanosorptive test.
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Table II. Parameters of the rheological model

Reference state wref = 4% Function of correction

k(0)
ref = 2.29 × 104 b(0) = 1–0.055 × (w − 4)

k(1)
ref = 1.52 × 105 b(1) = 1–0.012 × (w − 4)

k(2)
ref = 1.72 × 106 b(2) = 1–0.012 × (w − 4)

k(3)
ref = 8.9 × 104 b(3) = 1–0.059 × (w − 4)

η
(1)
ref = 4.57 × 108 a(1) = 1–0.015 × (w − 4)

η
(2)
ref = 2.47 × 108 a(2) = 1–0.20 × (w − 4)

η
(3)
ref = 1.86 × 108 a(3) = 1–0.17 × (w − 4)

Table II gives the values of spring modulus k(p)
ref (MPa) and the dashpot viscosities

η
(q)
ref (MPa s) at the reference state (wref = 4%) as well as the functions of correction

b(p) and a(q).
Figure 8 shows the experimental total strain and that simulated numerically.
We can note that the first drying under stress does not generate a great increase

in the viscoelastic strain, unlike the first moistening under load where the moisture
content never before reached is now exceeded. With this test, the initial maximum
moisture content is never exceeded at the later moistening; also one does not observe
an acceleration of the viscoelastic strain. After unloading, residual strains appear, a
small part of which will be covered during the first moistening. The residual strains
are due to the accumulation of the shrinkage–swelling strains, which is explained
by a difference between the shrinkage and the swelling during a moisture cycle. The

Figure 8. Results of the simulation.
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comparison of the numerical and experimental results shows differences that can
be explained by different argumentations. Comparing the apparent creep evolution
and the viscoelastic strains, we can suspect a bad interpolation of creep functions.
The main difficulty is to predict the viscoelastic behavior for the totality of exper-
imentation by interpolating the viscoelastic properties during a small creep phase.
The moisture content cycles are assumed by supposing a bijective relation with the
temperature and the relative humidity of the environment. In this case, the hysteresis
phenomena is not taken into account in the computation of moisture content. This
consideration can explain difficulties in simulating the free strain variations. Finally,
in this second experimentation, the relative high stress level (32MPa) can induce a
nonlinear viscoelastic behavior and can amplify the nonrecoverable strains.

6. Conclusions and Perspectives

While based on realistic thermodynamic principles, this original formulation en-
ables us to better understand the mechanisms involved in the moistening and drying
process of wood material. It makes it possible to show that most of the phenomena
called mechanosorption are especially of viscoelastic nature, the delayed effects
of which grow blurred over time (Hanhijarvi and Hunt, 1998). It is possible to
isolate the various phenomena concerned in the process, which it is not possible
with a single test. In order to have a realistic simulation, it is necessary to apply an
identification strategy to the tested specimen in order to calculate, separately, the
mechanical characteristics in a dry and wet state. The great difficulty of this work is
to isolate the various effects by avoiding inopportune couplings. Lastly, for appli-
cation of this tool to elements of larger structural size, it is of primary importance
to take into account the principle of diffusion, which generates a gradient, damping
and a temporal dephasing between the internal moisture and the external climatic
variations. It is thus necessary to develop a coupled model of thermal and hydrous
transfer whose diffusion parameters depend on the stress state, internal moisture
and the temperature in the material.
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Note

1 Wood viscoelastic behavior is nonaging when its temperature and its moisture content are constant.
It is linear for low stress level
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